

Institute of Theoretical Physics and Astronomy Vilnius University

Investigation of the transit duration parameter using different quality photometry data

- Marius Maskoliūnas
- Yuriy Chorniy

Supervisor: Erika Pakstiene

Identifiers (4) :

TYC 2792-1700-1

GSC 02792-01700

2MASS J00381756+4227470

Basic data :

TYC 2792-1700-1 -- Star

 Other object types:
 * (TYC,GSC), PI? (HAT), IR (2MASS)

 ICRS coord. (ep=J2000):
 00 38 17.5616 +42 27 47.249 [59.80 58.71 87] B 1998A&A...335L..65H

 FK5 coord. (ep=J2000 eq=2000):
 00 38 17.562 +42 27 47.25 [59.80 58.71 87]

 FK4 coord. (ep=B1950 eq=1950):
 00 35 34.13 +42 11 18.5 [99.88 95.25 90]

 Gal coord. (ep=J2000):
 120.3468 -20.3426 [59.80 58.71 87]

 Proper motions mas/yr:
 -20.3 -5.6 [1.6 1.5 90] B 2000A&A...355L..27H

 Spectral type:
 F8 D 2011A&A...529A.136E

References (36 between 1990 and 2016)

The first research of HAT-P-16b :

2010ApJ...720.1118B

Astrophys. J., 720, 1119-1125 (2010)

HAT-P-16b: a 4 M_J_ planet transiting a bright star on an eccentric orbit.

BUCHHAVE L.A., BAKOS G.A., HARTMAN J.D., TORRES G., KOVACS G., LATHAM D.W., NOYES R.W., ESQUERDO G.A., EVERETT M., HOWARD A.W., MARCY G.W., FISCHER D.A., JOHNSON J.A., ANDERSEN J., FURESZ G., PERUMPILLY G., SASSELOV D.D., STEFANIK R.P., BEKY B., LAZAR J., PAPP I. and SARI P.

Parameter	Value	Source	
T _{eff} , (K)	6158 ± 80	SME ^a	
[Fe/H] (dex)	$+0.17 \pm 0.08$	SME	
v sin <i>i</i> (km s ⁻¹)	3.5 ± 0.5	SME	
$v_{\rm mac} \ ({\rm km \ s^{-1}}) \dots$	4.61	SME.	
v _{mic} (km s ⁻¹)	0.85	SME	
$\gamma_{\rm RV} ({\rm km s^{-1}}) \dots$	-16.83 ± 0.19 0.2166	D-S SME+Claret ^b	
b_i M_{\bullet} (M_{\odot})	0.3617 1.218 ± 0.039	SME+Claret YY+a/R+SME ^c	
R, (R _☉)	1.237 ± 0.054	YY+a/R,+SME	
log g. (cgs)	4.34 ± 0.03	$YY+a/R_{\star}+SME$	
L, (L _O)	1.97 ± 0.22	YY+a/R_+SME	
v (mag)	10.812	TA SS	
My (mag)	4.03 ± 0.13	$YY+a/R_{\star}+SME$	
K (mag, ESO)	9.596 ± 0.021	2MASS+carpenterd	
M_K (mag, ESO)	2.74 ± 0.10	YY+a/R,+SME	
Age (Gyr)	2.0 ± 0.8	YY+a/R+SME	
Distance (pc)	235 ± 10	YY+a/R+SME	

Stellar Parameters for HAT-P-16

Orbital and Planetary Parameters

Parameter	Value	Parameter	Value
ParameterLight curve parameters P (days) T_c (BJD) T_c (BJD) T_{14} (days) ^a $T_{12} = T_{34}$ (days) ^a a/R_* a/R_* $b = a \cos i/R_*$ $b = a \cos i/R_*$ $b = a \cos i/R_*$ $k_{\rm Ry}^{\rm b}$ $k_{\rm Ry}^{\rm b}$	Value 2.775960 \pm 0.000003 2455027.59293 \pm 0.00031 0.1276 \pm 0.0013 0.0150 \pm 0.0014 7.17 \pm 0.28 17.73 \pm 0.10 0.1071 \pm 0.0014 0.193 ^{+0.063} _{-0.069} 0.439 ^{+0.065} _{-0.098} 86.6 \pm 0.7 531.1 \pm 2.8 -0.030 \pm 0.003 -0.021 \pm 0.004	Parameter Secondary collipse parameters T_5 (BJD) $T_{5,14}$ $T_{5,14}$ $T_{5,14}$ $T_{5,14}$ $T_{5,14}$ $T_{5,14}$ $T_{5,14}$ $T_{5,14}$ $T_{5,14}$ $T_{5,12}$ Planetary parameters M_p (M_3) R_p (R_1) $C(M_p, R_p)^r$ ρ_B (g cm ⁻³) ρ_B (g cm ⁻³) α (AU) $\log g_B$ (egs) T_{cq} (K) Θ^d (E) (109 mm s ⁻¹ mm ⁻²)#	Value 2455028.929 \pm 0.005 0.1234 \pm 0.0020 0.0142 \pm 0.0013 4 193 \pm 0.094 1 289 \pm 0.066 0.57 2.42 \pm 0.35 0.0413 \pm 0.004 3.80 \pm 0.04 1626 \pm 49 0 220 \pm 0.011 1.58 \pm 0.16
ω RV jitter (m s ⁻¹) RV rms from fit (m s ⁻¹)	$214 \pm 8^{\circ}$ 8.0 10.0	Notes.	r hainsaan finit in hei eusin

^a T_{14} : total transit duration, time between first to last contact; $T_{12} = T_{5a}$: ingress/egress time, time between first and second or third and fourth contact. The most recent reference to HAT-P-16b:

2016 ApJ...823...29A Astrophys. J., 823, 29-29 (2016) **Spin-orbit alignment for three transiting hot jupiters: WASP-103b, WASP-87b, and WASP-66b.** ADDISON B.C., TINNEY C.G., WRIGHT D.J. and BAYLISS D.

with the direct link to ather sources.

2011A&A...533A.113M

Astron. Astrophys., 533A, 113-113 (2011)

Spin-orbit inclinations of the exoplanetary systems HAT-P-8b, HAT-P-9b, HAT-P-16b, and HAT-P-23b.

MOUTOU C., DIAZ R.F., UDRY S., HEBRARD G., BOUCHY F., SANTERNE A., EHRENREICH D., ARNOLD L., BOISSE I., BONFILS X., DELFOSSE X., EGGENBERGER A., FORVEILLE T., LAGRANGE A.-M., LOVIS C., MARTINEZ P., PEPE F., PERRIER C., QUELOZ D., SANTOS N.C., SEGRANSAN D., TOUBLANC D., TRONCIN J.P., VANHUYSSE M. and VIDAL-MADJAR A.

2013A&A...557A..30C Astron. Astrophys., 557A, 30-30 (2013) 111 Simultaneous follow-up of planetary transits: revised physical properties for the planetary systems HAT-P-16 and WASP-21. CICERI S., MANCINI L., SOUTHWORTH J., NIKOLOV N., BOZZA V., BRUNI I., CALCHI NOVATI S., D'AGO G. and HENNING T.

The latter result:

S. Ciceri et al.: HAT-P-16b and WASP-21b Astron. Astrophys., 557A, 30-30 (2013)

 Table 7. Physical properties of the HAT-P-16 system obtained

in this work and compared with the discovery paper.

	This work (final)	Buchhave et al. (2010)
$M_{\rm A} (M_{\odot})$	$1.216 \pm 0.042 \pm 0.036$	1.218 ± 0.039
$R_{\rm A}(R_{\odot})$	$1.158 \pm 0.023 \pm 0.011$	1.237 ± 0.054
$\log g_{\rm A}$ (cgs)	$4.396 \pm 0.016 \pm 0.004$	4.34 ± 0.03
$\rho_{\rm A}(\rho_{\odot})$	0.784 ± 0.040	°
$M_{\rm b} (M_{\rm jup})$	$4.193 \pm 0.098 \pm 0.083$	4.193 ± 0.094
$R_{\rm b} (R_{\rm jup})$	$1.190 \pm 0.035 \pm 0.012$	1.289 ± 0.066
$g_{\rm b}~({\rm ms}^{-2})$	73.4 ± 4.1	63.1 ± 5.8
$\rho_{b}(\rho_{jub})$	$2.33 \pm 0.20 \pm 0.02$	1.95 ± 0.28
$T_{\rm eq}$ (K)	1567 ± 22	1626 ± 40
Θ	$0.2391 \pm 0.0073 \pm 0.0024$	0.220 ± 0.011
a (AU)	$0.04130 \pm 0.00047 \pm 0.00041$	0.0413 ± 0.0004
Age (Gyr)	0.5+0.4+0.5	2.0 ± 0.8

As can be seen, authors found that the planet is 1.3σ colder and smaller (Rb= 1.190 ± 0.037 RJup) than the initial estimates.

OBSERVATIONS

The observations of the star HAT-P-16b were obtained on the 5th August 2016 with the 1.65 m telescope at the Molėtai Observatory.

- Bias 20 CCD frames
- Dark 10 CCD frames
- Flat 38 CCD frames
- Images 2653 CCD frames

Easy to install, easy to operate, no need to write script, works quickly, good-looking working screen environment.

Only one disadvantage: without mouse can do nothing !

Easy to install, easy to operate, no need to write script, works quickly, good-looking working screen environment.

Only one disadvantage: without mouse can do nothing !

Masterbias

masterdark

🔊 🖲 🗊 SAOImage ds9

masterflat

Photometry data based on all 2653 CCD image frames

Photometry data based on selected 2412 CCD image frames

Photometry quality

Photometry quality

sig(V-C) = 0.0016 ÷ 0.0018 mag sig(V-C) = 0.0018 ÷ 0.0020 mag sig(V-C) = 0.0020 ÷ 0.0030 mag sig(V-C) = 0.0030 ÷ 0.0040 mag sig(V-C) = 0.0040 ÷ 0.0100 mag

Photometry quality

sig(V-C) = 0.0016 ÷ 0.0018 mag sig(V-C) = 0.0018 ÷ 0.0020 mag sig(V-C) = 0.0020 ÷ 0.0030 mag sig(V-C) = 0.0030 ÷ 0.0040 mag sig(V-C) = 0.0040 ÷ 0.0100 mag

Transit from all CCD frames and best quality (sig=0.0016÷0.0018 mag) data

Conclusions

 During the observational night the photometric conditions varied according to the meteorological issues.

Conclusions

- During the observational night the photometric conditions varied according to the meteorological issues.
- The beginning and the end of the transit was observed at the time of the best photometric quality.

Conclusions

- During the observational night the photometric conditions varied according to the meteorological issues.
- The beginning and the end of the transit was observed at the time of the best photometric quality.
- The best transit duration time determined using the selection of the best photometry data instead of all the data. (best agreement with the EDT database and our determined light curve)

And small can be great !!!

We would like to say thank you to all the lecturers for the wonderful presentations and consultations.

We would like to say thank you to all the lecturers for the wonderful presentations and consultations.

We are saying thank you to all the students too for having a good time during this summer school.

We would like to say thank you to all the lecturers for the wonderful presentations and consultations.

We are saying thank you to all the students too for having a good time during this summer school.

Many thanks to Mindaugas Macijauskas and Žydrūnė Misikonyte for helping to install "Muniwin" and helping with English language.

We would like to say thank you to all the lecturers for the wonderful presentations and consultations.

We are saying thank you to all the students too for having a good time during this summer school.

Many thanks to Mindaugas Macijauskas and Žydrūnė Misikonyte for helping to install "Muniwin" and helping with English language.

And finally, the biggest thanks to our best supervisor Erika Pakštienė for her important assistance in this project.

Thank you for your attention

Questions?