Radial Velocity /Time Series analysis of γ Equ

Odete Alves Martin Gustavsson Tunde Akinsanmi

Outline

• Introduction

Method

• Analysis

• Results

Introduction

- γ-Equ belongs to a class of Rapidly Oscillating Ap stars (roAp)
- They show high abundance in metals especially in Praseodymium and Neodymium
- They rotate slower than normal A and B stars due to their strong magnetic fields
- They exhibit short-timescale (4-16 min) photometric variations of low amplitudes (15mmag)
- This leads to radial velocity variations of the spectral lines

γ-Equ

 γ-Equ is the second brightest roAp star out of 35 with rotation period of 77 years.

* gam Equ -- Variable Star of alpha2 CVn type

Other object types: * (*,AG,...), ** (**,ADS,...), IR (IRAS,2MASS), PM* (LSPM), a2* (Ref), V* (V*), UV (TD1) ICRS coord. (ep=J2000) : 21 10 20.50005 +10 07 53.6763 (Optical) [5.79 4.58 90] A 2007A&A...474..653V FK5 coord. (ep=J2000 eq=2000) : 21 10 20.500 +10 07 53.68 [5.79 4.58 90] FK4 coord. (ep=B1950 ea=1950); 21 07 54.57 +09 55 45.0 [33.32 26.64 0] Gal coord. (ep=J2000) : 059.9329 -24.7630 [5.79 4.58 90] Proper motions *mas/yr*: 48.74 -153.03 [0.66 0.52 0] A 2007A&A...474..653V V(km/s) -16.50 [0.3] / z(~) -0.000055 [0.000001] / cz -16.50 [0.30] Radial velocity / Redshift / cz : A 2006AstL...32..759G Parallaxes (mas): 27.55 [0.62] A 2007A&A...474..653V Spectral type: A9VpSrCrEu C 1985ApJ5...59...95A Fluxes (8) : U 5.03 [~] C 2002yCat.2237....0D B 4.94 [~] C 2002yCat.2237....0D V 4.68 [~] C 2002yCat.2237....0D R 4.43 [~] C 2002yCat.2237....0D I 4.32 [~] C 2002yCat.2237....0D J 4.28 [~] C 2002yCat.2237....0D H 4.18 [~] C 2002yCat.2237....0D K 4.10 [~] C 2002yCat.2237....0D

Stellar Observations Network Group

- Launched in 2006 by astronomers at <u>Aarhus University</u> and the <u>University of Copenhagen</u>.
- SONG is a Danish-led project dedicated to the design and construction of a global network of small telescopes for the study of stars and planetary systems around stars.
- 1st telescope is 1 meter
 in diameter at Teide
 Observatory in Tenerife
 (Hertzsprung telescope)

Request	Object	Vmag	RA	DEC	RA PM	DEC PM
10622	GammaEqu	4.68	21:10:20.50	10:07:53.68	48.74	-153.03

Status	Updated at	Proposal PI	Project name	Project ID	Priority
done	2016-08-06T00:30:04	Vichi Antoci	P03-000	0	98

Mode	Slit	# ThAr	Exp. time	Exposures	Start window	Stop window
none-iodine	6	1	250	26 of 50	2016-08-05T21:50:00	2016-08-06T00:30:00

Please note that not all parameters for each OR are displayed!

Quick Look

---TEL--= '----TELESCOPE-----' / ------TEL_RA = 21.1723745 / Right Ascension of the telescope TEL DEC = 10.1307799 / Declination of the telescope TEL AZ = 146.3059908 / Azimuth of the telescope TEL ALT = 68.8023324 / Altitude of the telescope TEL FOC = 2.987 / Focus of the telescope TEL TM = 12 / Third mirror position TEMP_M1 = 17.56 / Temperature M1 $TEMP_M2 =$ 19.93 / Temperature M2 TEMP M3 = 20.19 / Temperature M3 TEMP_TT = 20.68 / Temperature Structure ----SP----= '----SPECTROGRAPH----' / ------SLIT 6 / Slit position (1 to 9) = 187628 / The camera mirror focus CAMFOCS = 29.0 / The temperature of camera flange inside TEMP1 = TEMP2 = 29.26 / The temperature of cross disperser TEMP3 = 28.21 / The temperature of spectrograph table TEMP4 = 19.18 / The temperature of container air THAR 0 / ThAr lamp (off=0, on=1) = HALOGEN = 0 / Halogen lamp (off=0, on=1) I2POS = 2 / Iodine pos (1=test-cell,2=free,3=iodine) I2T_ACT = 65.3 / The actual temp. of the iodine cell 65.0 / The set temp. of the iodine cell I2T SET = 4 / Filter wh. (1=n1.3,2=n2,3=n3,4=5=free,6=n0.7) FILTWH = 1 / Calib. mirror: (1=out,2=in,3=ThAr,4=Aux) $CALIB_M =$ 3 / Beamsplit: (1=end,2=acqui,3=cube) MIRR_SL = 1 / Cell-ID of the iodine cell in use. IODID = ---W----= '-----WEATHER-----' / ------W_TIME = 'Current Data' / Reliability of weather data OUTTEMP = 18.8 / The temp (Celsius) outside the container 14.8 / The humidity (%) outside the container OUTHUMID= OUTPRESS= 775.0 / The pressure (mb) outside the container. 9.6 / The windspeed (m/s) outside the container. WINDSPEE= 318.0 / The wind direction outside the container WIND-DIR= 1.89 / The current seeing value on slit guiders SEEING1 = 1.89 / The running mean seeing on slit guiders SEEING2 = 22.95 / Left side pupil flux level PUPIL_FL= PUPIL_FR= 18.03 / Right side pupil flux level

Flat and Bias frames

Objectives

• Calculate RV shift of prominent lines from SONG spectra.

 Obtain time-series of high-resolution high S/N spectra of γ -Equ to study in detail the line profile variations due to stellar pulsations.

• Obtain period of this pulsation.

Methods

- Selection of spectral line with greatest RV shift and its order
- Spectrum Normalization
- RV calculation
- Times series plot
- Period determination

Ion	$\lambda_{ ext{lab}}$	K	σ_{K}	φ	σ_{φ}	P
	A	ms^{-1}	$m s^{-1}$			
FeII	6141.10	≤ 120				
Ball	6141.71	93	16	0.899	0.031	2,3
Siı	6142.48	≤ 90				
Cen	6143.38	296:	60	0.915:	0.034	2.1
NdIII	6145.07^{1}	470	21	0.159	0.007	2,1
SH	6145.02^{*}					
Lan	6146.52	216:	49	0.944:	0.039	2,3
CrII	6147.14	≤ 60				
Fe 11	6147.74	72:	16	0.674:	0.037	3,4
PrII	6148.24	348	96	0.886	0.048	2
uncl.	6148.86	736	30	0.060	0.006	2
FeII	6149.26	64:	14	0.667:	0.036	3,4
FeII	6150.10	89:	35	0.473:	0.073	4,3
uncl.	6150.62	557	44	0.141	0.044	3,2
Fe1	6151.62	≤ 75				
YbII	6152.57	377:	95	0.881:	0.045	4,3
Naı	6154.23	364	72	0.893	0.032	3,4
Siı	6155.13	≤ 70				
SmII	6156.92	320	50	0.953	0.025	2,3
Fei	6157.73^2	209:	17	0.039:	0.013	2,3
CrII	6158.113	184	31	0.564	0.027	1.2
Cr II	6158.18^{3}					1.1
01	6158.18^{3}					
Сап	6158.57^4	137	47	0.056	0.052	1.2
CrII	6158.62^4					
Fel	6159.38^{5}	<100				
CrI	6159.48 ⁵	_				
PrIII	6160.24	788	37	0.169	0.007	1.2
Nat	6160.75	320	30	0.958	0.016	3.4
PrII	6161.18^{6}	339	33	0.151	0.016	1.2
PrIII	6161.22^{6}					
Cal	6161.30^{6}					
Car	6162.17	<30				
The second second		123.0.024				

Spectra showing order 40

Line selected is that of Nd III at 6145.07 Å

Blaze function correction

Normalization

Plot of all spectra for one night and the mean

Zoom in on the line(Nd III)

Fitting Gaussian to a spectral line

"Wavelength" [km/s]

Period determination

• Make a Fourier transform of the time series

Night 1 (F=0.0808299775, A=0.248978516)

Night 2

My Fourier calculation (F=0.0808585982, A=0.223506664)

Night 3

Results

Night	Frequency (min ⁻¹)	Period (min)
1	0.0808	12.37
2	0.0793	12.61
3	0.0809	12.37

Mean period=12.45 minutes; which is in close agreement with Period of 12 minutes gotten from the literature. *Kochukhov et al 2001*

Time series Residuals

Final Remarks

- This shows detection of metal line profile variability due to the rapid oscillation in a roAp star
- The result is consistent with that obtained by the paper by *Kochukhov et al 2001*