

Timo Prusti

Observational Stellar Astrophysics in the Era of Gaia and Kepler Space Missions

Gaia Summary

- ESA mission building on the Hipparcos heritage
- Astrometry, Photometry and Spectroscopy
- Launch September 2013
- Satellite, including the payload, by industry (Astrium, Toulouse), operations by ESA and data processing by scientists (DPAC)
- Science Alerts early on
- First intermediate data release 22 months after launch

www.rssd.esa.int/Gaia

Science Topics

- Structure and dynamics of the Galaxy
- The star formation history of the Galaxy
- Stellar astrophysics
- Binaries and multiple stars
- Brown dwarfs and planetary systems
- Solar system
- Galaxies, Quasars and the Reference Frame
- Fundamental physics: General relativity

Gaia vs. Hipparcos

- Magnitude limits:
 - Hipparcos <12 mag
 - Gaia 6 20 mag
- Number of objects: 120,000 => 10⁹
- Accuracy: milliarcsec => µarcsec
- Radial velocity: none => 150 million objects
- Pre-selected => Unbiased survey

Payload and Telescope

Focal Plane

Total field:

- active area: 0.75 deg²
- CCDs: 14 + 62 + 14 + 12 (+ 4)
- 4500 x 1966 pixels (TDI)
- pixel size = 10 μ m x 30 μ m
 - = 59 mas x 177 mas

Sky mapper:

- detects all objects to 20 mag
- rejects cosmic-ray events
- field-of-view discrimination

Astrometry:

- total detection noise ~ 6 e⁻

Photometry:

- spectro-photometer
- blue and red CCDs

Spectroscopy:

- high-resolution spectra
- red CCDs

• Basic Angle Monitor (BAM)

The Radiation Effect on CCDs

40-

• esa

Credit Michael Davidson

Photometry Measurement Concept

Radial-Velocity Measurement Concept

Sky-Scanning Principle

Data Processing

Light Bending in Solar System

Light bending in microarcsec, after subtraction of the much larger effect by the Sun

Scientific Performance

Astrometry

6 < G < 12: bright-star regime (calibration errors, CCD saturation)
12 < G < 20: photon-noise regime, with sky-background noise and electronic noise setting in around G ~ 20 mag

Parallax horizon for GOV stars (no extinction)

10 kpc

12 5 10 20% You are here

Parallax horizon for GOV stars

10 kpc

20%

Parallax horizon for K5III stars

2

1

5

5

Figure courtesy

_ennart

_indegrer

20%

10

10

Parallax

- Closest star 1.30 pc (4.24 light years) parallax 769 mas
 - Gaia: I.30xxx ±0.0001pc
- Parallax known to 1% for 719 stars
 - Gaia > 10⁷

Parallax statistics

Astrometry

6 < G < 12: bright-star regime (calibration errors, CCD saturation)
12 < G < 20: photon-noise regime, with sky-background noise and electronic noise setting in around G ~ 20 mag

Photometry

Transit level integrated photometry

Spectro-photometry

- Illustrative spectra for G=15 mag stars (Jordi et al. 2010)
- Goals at G=15 mag e.g. extinction within
 0.1 mag, surface gravity
 0.2dex, metallicity
 0.2dex and effective
 temperature within
 200K (Bailer-Jones 2010)

Spectroscopy

Single CCD S/N estimate

Interstellar reddening, atmospheric parameters, and rotational velocities, for stars brighter than $G_{RVS} \approx 12 \text{ mag} (\sim 5)$ million stars)

provide element abundances for stars brighter than G_{RVS} ≈ II mag (~2 million stars)

End-of-life Radial Velocity Errors

Figure courtesy of Francois Mignard

Accuracy in Transverse Velocity

Star-Forming Region 30 Doradus Hubble Space Telescope • WFC3/UVIS

NASA, ESA, F. Paresce (INAF-IASF, Italy), and the WFC3 Science Oversight Committee STScI-PRC09-32a

 HST (black) vs. one epoch of 4.4s of Gaia (green) observations on one CCD in R136

Figures courtesy of de Bruijne & de Marchi

 Phased Array Antenna (PAA)

Micro-thruster
Assembly (MTA)

 Deployable Sunshield Assembly checked after testing, dismounted from the Service Module (SVM) and put into storage

Intermediate Data Releases

- Intermediate Data Release Scenario agreed with inputs from Data Release Policy and DPAC Operations Plan
 - Science Alerts as soon as possible
 - L+22m positions, G-magnitudes, proper motions to Hipparcos stars, ecliptic pole data
 - L+28m + first 5 parameter astrometric results, bright star radial velocities, integrated BP/RP photometry
 - L+40m + BP/RP data, some RVS spectra, astrophysical parameters, orbital solutions for short period binaries
 - L+65m + variability, solar system objects
- Scenario needed, in addition to technical planning, for establishing Archive Access coordination unit

- Galileo launch in October 2011 successful and with mechanical loads as anticipated
- Gaia launcher manufacturing started
- Soyuz rocket Sz-013

Schedule

- Service Module in Thermal Balance/Thermal Vacuum (TB/TV) at this moment
- Payload Module TB/TV starting October
- Spacecraft level assembly starting January 2013 leading to launch in September
- Commissioning phase 4 months and data processing initialization during the following 2 months of ecliptic pole scanning
- Start of Science Alerts 2014
- First intermediate data release summer 2015
- First data release with five parameter astrometry late 2015/early 2016
- End of nominal operations and start of operations extension 2019
- "Final release" 2021

Promises of Gaia

- Orders of magnitude improvements
- Schedule stabilising: launch September 2013
- Science alerts early on and intermediate releases starting two years after launch
- Get ready for **the** promise of Gaia

...astronomy will change

Gaia