Future Challenges....

Hans Kjeldsen Aarhus University, Denmark

 Minutes/hours: Oscillations, Eruptions in active regions, granulation

KIC 11395018 and KIC 11234888

S. Mathur et al.: Solar-like oscillations in KIC 11395018 and KIC 11234888 from 8 months of Kepler data

- Minutes/hours: Oscillations, Eruptions in active regions, granulation
- Days/months: Rotation, Spots, damping and excitation of oscillations

540 d, mag: 8.74

Kepler

Constraining the Core-Rotation Rate of Red-Giant stars.

Paul G. Beck¹, Josefina Montalban², Thomas Kallinger^{1,3,4}, Joris De Ridder¹, Conny Aerts^{1,5}, Rafael A. García⁶, Saskia Hekker^{7,8}, Marc-Antoine Dupret², Benoit Mosser⁹, Patrick Eggenberger¹⁰, Dennis Stello¹¹, Yvonne Elsworth⁸, Søren Frandsen¹², Fabien Carrier¹, Michel Hillen¹, Michael Gruberbauer¹³, Jørgen Christensen-Dalsgaard¹², Andrea Miglio⁸, Marica Valentini², Timothy R. Bedding¹¹, Hans Kjeldsen¹², Forrest R. Girouard¹⁴, Jennifer R. Hall¹⁴, Khadeejah A. Ibrahim¹⁴

... we report the detection of non-rigid rotation in the interiors of red-giant stars using light curves obtained by the Kepler spacecraft. We exploit rotational splittings of the recently detected mixed modes, to demonstrate an increasing rotation rate from the surface of the star to the stellar core. Comparing with theoretically predicted rotational splittings, we established that **the core must rotate at least ten times faster than the surface**.

- Minutes/hours: Oscillations, Eruptions in active regions, granulation
- Days/months: Rotation, Spots, damping and excitation of oscillations
- Years: Activity cycles

- Minutes/hours: Oscillations, Eruptions in active regions, granulation
- Days/months: Rotation, Spots, damping and excitation of oscillations
- Years: Activity cycles
- Millions and Billions of years: Structure and composition

Chaplin et al. 2011

450 d, mag: 7.18

Kepler

540 d, mag: 9.27

Kepler

Stellar evolution

Figure 1. Evolution of oscillation frequencies in a $2.2 M_{\odot}$ star, from model calculations by J. Christensen-Dalsgaard. Only modes with $\ell = 0, 1, 2$ and $n \leq 10$ are shown.

Stellar evolution

T. Bedding et al.: Distinguishing between hydrogen- and helium-burning red giant stars with asteroseismology using gravity-mode period spacings

Observational Asteroseismology: Observables

- Oscillation frequencies and frequency differences/ratios/splittings
- Oscillation mode identification (degree, order and mode type; g/p/f, mixed)
- Oscillation mode properties (amplitude, amplitude ratios, phase, phase differences, life time, ...)
- Changes (short term and long term) in mode parameters (frequencies, amplitudes, ...)

Requirements for Observational Asteroseismology: High-precision time series photometry with high duty cycle

$$data(t) = noise(t) + \sum_{i=1}^{n} a_i \cdot \sin(2\pi \cdot f_i \cdot t - \phi_i)$$

Following Montgomery and D. O'Donoghue, 1999

$$\sigma(a) = \sqrt{\frac{2}{\pi}} \langle A_{Noise}(\nu) \rangle = \sqrt{\frac{\langle P_{Noise}(\nu) \rangle}{2}} \approx 0.80 \cdot \langle A_{Noise}(\nu) \rangle$$

$$\sigma(\phi) = \frac{\sigma(a)}{a} \qquad \qquad \sigma(f) = \sqrt{\frac{3}{\pi^2} \frac{1}{T}} \cdot \sigma(\phi)$$

$$\sigma(f) = \frac{\sqrt{3}}{\pi \cdot T} \frac{\sigma(a)}{a} = \sqrt{\frac{6}{\pi^3}} \frac{\left\langle A_{Noise}(\nu) \right\rangle}{a \cdot T} \approx 0.44 \cdot \frac{\left\langle A_{Noise}(\nu) \right\rangle}{a \cdot T}$$

$$\langle A_{Noise}(\nu) \rangle = \sqrt{\frac{\pi}{N}} \cdot \sigma_{Noise} \propto T^{-1/2}$$

Following Montgomery and D. O'Donoghue, 1999

$$\sigma(a) \propto \sigma_{\scriptscriptstyle Noise} \cdot T^{-1/2}$$

$$\sigma(\phi) \propto \sigma_{Noise} \cdot a^{-1} \cdot T^{-1/2}$$

$$\sigma(f) \propto \sigma_{Noise} \cdot a^{-1} \cdot T^{-3/2}$$

Coherent modes

Damped and re-excited modes

$$\sigma(a) \propto \sigma_{Noise} \cdot T^{-1/2}$$

 $\sigma(f) \propto \sigma_{Noise} \cdot a^{-1} \cdot T^{-1/2}$

Requirements: High-precision time series photometry with high duty cycle

Space:

- High Photometric Precision due to no atmospheric effects (scintillation)
- Long uninterrupted time series (high duty cycle, extended observation)
- Large number of targets observed (large FOV, high density of stars)

CoRoT and MOST Low Earth Orbit (LEO)

Several pointings

Kepler Orbit Earth trailing Heliocentric

One FOV for whole mission

Primary Mirror 1.4 m dia, ULE T.4 m dia, ULE Mounting Collet Terrinal Radiator Terri

CoRoT: 4 CCD's

Kepler: 42 CCD's

MOST: 1 CCD

metallisation pattern

open area 6 x 6 Fabry array

frame transfer area

The three Space Missions

- **MOST**: Precursor for dedicated time series missions. Focus is on bright stars.
- CoRoT: More than 100,000 targets for exoplanet studies (T(obs) < 180d). Few hundred stars observed for asteroseismology.
- Kepler: Very extended time series data (years). Relatively low crowding effects. High dynamical range (V: 7-16)

The data ...

Jenkins et al. 2010

Kepler

Can the data meet the challenges? a series of examples

Kepler

Noise levels

Magnitude 7: 15 ppm / min
 2.8 ppm / 30-min
 0.40 ppm / day
 0.04 ppm / Q (90-d)

Amplitude Spectrum Noise (90-d): 0.08 ppm

Stellar evolution

Figure 1. Evolution of oscillation frequencies in a $2.2 M_{\odot}$ star, from model calculations by J. Christensen-Dalsgaard. Only modes with $\ell = 0, 1, 2$ and $n \leq 10$ are shown.

Table 1. Frequency accuracy for a V = 8 target observed by KEPLER

Coherent			Damped		
Т	a = 0.01	a = 100 ppm	$ au = 10 ext{ d}$ $a = 50 ext{ ppm}$	$\tau = 3 d$ $a = 5 ppm$	$ au = 6 \mathrm{hr}$ $a = 5 \mathrm{ppm}$
90 d 3 yr 7 yr	$\begin{array}{ccc} 0.7 & { m pHz} \\ 0.02 & { m pHz} \\ 0.005 & { m pHz} \end{array}$	$egin{array}{c} 70 \ \mathrm{pHz} \ 2 \ \mathrm{pHz} \ 0.5 \ \mathrm{pHz} \end{array}$	$\begin{array}{c} 0.0013 \ \mu { m Hz} \\ 0.0004 \ \mu { m Hz} \\ 0.0002 \ \mu { m Hz} \end{array}$	$0.040 \mu { m Hz} \\ 0.013 \mu { m Hz} \\ 0.008 \mu { m Hz}$	$0.50\mu{ m Hz}\ 0.16\mu{ m Hz}\ 0.10\mu{ m Hz}$

$$\sigma\left(\frac{1}{P}\frac{dP}{dt}\right) \approx \frac{\sigma(f)}{f}\frac{1}{T} \propto \sigma_{\text{noise}} a^{-1} f^{-1} T^{-5/2}$$

$$\sigma \left(\frac{1}{P} \frac{dP}{dt} \right) < 10^{-10} \, \mathrm{yr}^{-1}$$

Kepler Exoplanet Candidates – June 2010

Kepler Exoplanet Candidates – Feb 2011

Kepler Exoplanet Candidates – Feb 2011

Kepler: 827 Single Planet Systems Detected

Letham et al. 2011

Kepler: 827 Single Planet Systems Detected

408 candidates in 170 multiple systems

(from Spitzer)

Kepler Exoplanet Candidates – Dec 2011

Kepler-10 Light Curve

Batalha et al. 2011

Kepler Exoplanet Candidates – Dec 2011

Kepler-22b

Kepler-22b

Mass, M_{\odot} Radius, R_{\odot} Luminosity, L_{\odot} Distance (pc) Orbital period, P (days) Radius, R_{\oplus} Mass, M_{\oplus} , (1 σ , 2 σ , & 3 σ upper limits) Orbital semi-major axis, a (AU) Equilibrium temperature, T_{eq} (K)

 $\begin{array}{c} 0.970 \pm 0.060 \\ 0.979 \pm 0.020 \\ 0.79 \pm 0.04 \\ 190 \\ 289.8623 + 0.0016/ - 0.0020 \\ 2.38 \pm 0.13 \\ 36, 82, 124 \\ 0.849 + 0.018/ - 0.017 \\ 262 \end{array}$

David M. Kipping & David S. Spiegel. *Monthly Notices of the Royal Astronomical Society*. For all models, the geometric albedo is < 1%, and for the best-fit models it is $\sim 0.04\%$

Lissauer et al. 2011

Observed minus calculated mid-times of planetary transits (min)

Kepler: 827 Single Planet Systems Detected

408 candidates in 170 multiple systems

Kepler is extended to the end 2016

