
Photometric temperature estimation

Photometry = (very) low-resolution spectroscopy

Slope of continuum can be used as measure of temperature (think black-body/Plank function).

Measure 'appropriate' slope -> Teff

Logarithmic brightness


General approach:

 $T_{eff} = f(colour, [M/H]) + table of corrections$

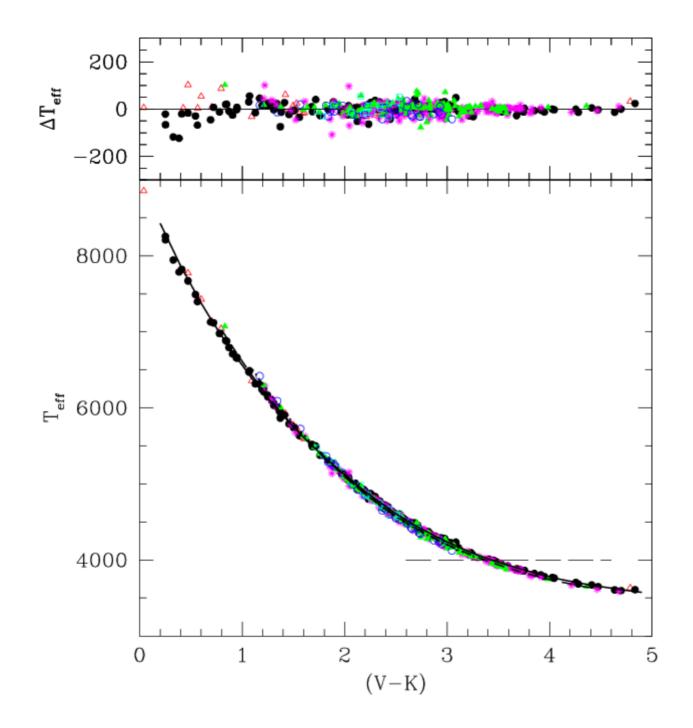
... functional form of 'f' is usually a polynomial.

Many calibrations exist in literature.

Reference temperature for deriving the calibration Is usually from the IRFM.

Home > All issues > Volume 140/ 3 > Article

Free access	article		Homepage			
Issue	Astron. Astrophys. Suppl. Ser. Volume 140, Number 3, December II 1999		Table of contents Next article ►			
Page(s) DOI	261 - 277 http://dx.doi.org/10.1051/aas:1999521		Abstract Full HTML PDF (911.1 KB)			
DOI: 10.105	DOI: 10.1051/aas:1999521					
Astron. Astr	Astron. Astrophys. Suppl. Ser. 140, 261-277					
The effective temperature scale of giant stars (F0-K5)						
II. Empirical calibration of $T_{ m eff}$ versus colours and [Fe/H]						
A. Alonso - S. Arribas - C. Martínez-Roger Send offprint request: A. Alonso Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Spain						
	-mail: aas@II.iac.es, sam@II.iac.es and cmr@II.iac.es					
	present calibrations of the effective temperatures of giant stars versus [Fe/H] and colours (U-V), (B-V), (R-I), (V-R), (V-I), (V-K), (J-H), (J-K), (V-L'), (b-y) and (u-b). These calibrations are based on a large sample of d and globular cluster stars which roughly cover spectral types from F0 to K5. Their effective temperatures, scaled to <i>direct</i> $T_{\rm eff}$ determinations via reliable angular diameter measurements, were derived by applying the					
infrared flux	rared flux method. The empirical relations have been fitted to polynomials of the form $\theta_{\text{eff}} = P(\text{colour}, [Fe/H])$ by using the least squares method. The precision of the fits ranges from 40 K for (V-K)to 170 K for (J-H). We					
tabulate intr	abulate intrinsic colours of giant stars in the ranges: 3500 K $\leq T_{ m eff} \leq$ 8000 K; -3.0 \leq [Fe/H] \leq +0.5. We also present the calibration of BC(V) as a function of log $(T_{ m eff})$ and metallicity. Finally, we compare the resulting scale					
of temperatures with previous works.						
Key words: stars: fundamental parameters stars: Population II stars: giants stars: atmospheres stars: general						
SIMBAD Obj	ects					


Copyright The European Southern Observatory (ESO)

EDP Sciences Credits Contacts

of stars considered, are also shown. Column 1 contains the equation number assigned to each fit in the text										
Eq. #	Colour	<i>a</i> ₀	<i>a</i> ₁	<i>a</i> ₂	<i>a</i> ₃	<i>a</i> ₄	<i>a</i> 5	$\sigma(\theta_{\rm eff})$	$\sigma(T_{\text{eff}})$ (K)	N. of stars
1	(U-V)	0.6388	0.4065	-0.1117	-2.308e-3	-7.783e-2	-1.200e-2	0.023	164	127
2	(U-V)	0.8323	9.374e-2	1.184e-2	2.351e-2	-0.1392	-1.944e-2	0.020	80	283
3	(B-V)	0.5716	0.5404	-6.126e-2	-4.862e-2	-1.777e-2	-7.969e-3	0.020	167	122
4	(B-V)	0.6177	0.4354	-4.025e-3	5.204e-2	-0.1127	-1.385e-2	0.024	96	416
5	(V-R)	0.4972	0.8841	-0.1904	-1.197e-2	-1.025e-2	-5.500e-3	0.021	150	248
6	(V-I)*	$\theta_{\text{eff}} = 0.5379 + 0.3981(V - I) + 4.432 \text{ e} \cdot 2 (V - I)^2 - 2.693 \text{ e} \cdot 2(V - I)^3$						0.017	125	214
7	(R-I)	0.4974	1.345	-0.5008	-8.134e-2	3.705e-2	-6.184e-3	0.022	150	217
8	(V-K)	0.5558	0.2105	1.981e-3	-9.965e-3	1.325e-2	-2.726e-3	0.005	40	256
9	(V-K)	0.3770	0.3660	-3.170e-2	-3.074e-3	-2.765e-3	-2.973e-3	0.005	25	412
10	(J-H)	0.5977	1.015	-1.020e-1	-1.029e-2	3.006e-2	1.013e-2	0.023	170	505
11	(J-K)	0.5816	0.9134	-0.1443	0.0000	0.0000	0.0000	0.020	125	511
12	(V-L')*	$\theta_{\text{eff}} = 0.5641 + 0.1882(V - L') + 1.890e-2 (V-L')^2 - 4.651e-3(V-L')^3$							65	122
13	(I-K) _J	0.5859	0.4846	-2.457e-2	0.0000	0.0000	0.0000	0.018	130	213
14	(<i>b</i> - <i>y</i>)	0.5815	0.7263	6.856e-2	-6.832e-2	-1.062e-2	-1.079e-2	0.013	110	118
15	(<i>b</i> - <i>y</i>)	0.4399	1.209	-0.3541	8.443e-2	-0.1063	-1.686e-2	0.018	70	169
16	<i>(u-b)</i>	0.5883	0.2008	-5.931e-3	5.319e-3	-1.000 e-1	-1.542e-2	0.021	110	181

Table 2: Coefficients for the fits of the form $\theta_{\text{eff}} = a_0 + a_1 X + a_2 X^2 - a_3 X [Fe/H] + a_4 [Fe/H] + a_5 [Fe/H]^2$, where X stands for the colour (Col. 2). The corresponding standard deviations $\sigma(\theta_{\text{eff}})$ and $\sigma(T_{\text{eff}})$, together with the number

* The functional expression of the fit for this colour is explicitly shown, since it differs from the general expression adopted.

Recommendations/procedures..... loose ends, comments

• Decide on photometric system to use (make sure it matches

the system for which the calibration was derived!!

- Obtain photometry for your objects (DIY or use catalogs.... assess the quality!! (2MASS, SDSS, Tycho......)
- Beware of reddening!!
- Remember the validity range for the calibration you use