Evolution of stellar
surface abundances

e Stellar evolution: dredge-ups

e Galactic chemical evolution




Main questions

* Which chemical elements are produced
during different phases of stellar evolution?

* How are the elements transported to the
surface of the star and into the interstellar
medium!?

e Answers are based on results of stellar
evolution models



Structure of zero-age main-sequence stars
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Hydrogen profile in Mg star
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Hydrogen burning: CNOF cycles
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Dredge-up effect

e Composition throughout a convection zone is uniform
— H burning products can migrate to cooler regions

* When convective stellar envelope has inner boundary
overlapping with outer boundary of formerly convective
core — products of nuclear burning brought to surface
and observed in spectrum — dredge-up

e Can be used as test of stellar evolution theory

* Occurs three times during post-main-sequence
evolution



Structure of 6 M, star from main sequence to AGB
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First dredge-up — effects on surface abundances

H-burning products are mixed to surface
Doubling of surface '*N abundance

Reduction of surface '2C abundance by approx 30%,
e.g.—0.1 dex for metal-poor field stars of Carretta et al. (1999)

Reduction of surface ratio '2C/'3C to about 20-30 (solar = 95)

Reduction of envelope Li and Be abundances by several orders
of magnitude

Slight change in 'O abundance

Values depend on mass, metallicity, He content, efficiency of
convection
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Thermal pulses at top of AGB

—> |. H-burning shell above He layer above C-O core.

He layer contracts and heats up until He burning starts
in very thin shell — thermal instability — He-shell flash

2. High nuclear energy generation rate for short time,
energy absorbed by layers above by expansion and cooling
— H burning switched off

3. He-burning shell moves outward, approaches H-rich
envelope, increases temperature there
— H-shell burning starts again

— 4. Temperature close to H-burning shell adjusts to thermal
equilibrium — too low for He burning — He-shell burning

stops



Third dredge-u
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Nucleosynthesis during core-collapse
supernova explosions

e Shock wave heats envelope to = 5-10% K
— nuclear statistical equilibrium (a.k.a. Si burning)

o (y) () (@, 7)
80 = 2INe = Mg = 98Si...

— main production site of “X-elements”
O, Ne, Mg, Si, S, Ca

e Heaviest product ggNi

e Example: total amount of metals produced by 20 M
star is about 3 M, of which 1-2 M are oxygen, and
0.2 M, are carbon.



Nucleosynthesis during SN la explosions

Intermediate-mass stars in close binary systems may, after
becoming a white dwarf, accrete enough matter to surpass
the Chandrasekhar mass limit and cause a Type la
supernova.

Nucleosynthesis during a SN la is very efficient in
producing iron-peak isotopes, while also producing various
lighter elements.

For example, the models by Nomoto et al. (1984) predict
that a | M, CO-white dwarf/red-giant SN la produces 0.9
M, of Cr—Ni,and 0.4 M, of Mg—Ca.

It is estimated that SNe la contributed about 2/3 of the

iron in the solar neighborhood, the remainder coming from
SNe Il.



Summary

* Which chemical elements are produced during
different phases of stellar evolution!?

" Main sequence and H-shell burning: He, N
* He-burning: C, O
* AGB (He-shell flash): Ne, Mg, s-process elements

* Supernovae: Fe-peak elements, xx-elements,
possibly r=process elements

 How are the elements transported to the surface of
the star and into the interstellar medium?

= Convection, dredge-ups
* Wind of AGB stars
"= Supernova explosions



Chemical evolution
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[C/Fe]

[Mg/Fe]

Observed abundance trends for C and X-elements
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Observed abundance trends for heavy elements

Titanium

Barium (s-process)
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THE END



