Surveying the Galaxy

ESA's upcoming Gaia mission

Andreas Korn

IFA, Uppsala University
andreas.korn@physics.uu.se
gaia

Predicting the future...

Outline of this talk

\star Where we stand with the Galaxy

* Where we stand with Gaia
\star Challenges
\star Scientific impact

The Milky Way Galaxy

The Sun is a normal G2V stars.

Maybe, but it is unusually massive (most stars are M dwarfs) and it departs systematically from field solar twins in its chemical composition (but cf. Önehag et al. (2011) for a solar twin in the open cluster M 67).

Meléndez et al. (2009)

The Milky Way Galaxy

The Sun is a normal G2V stars. (Maybe.)

The Milky Way is a normal (barred) spiral.

Probably, but its primary satellites are unusually luminous and star-forming: the Magellanic Clouds
(cf. Holmberg 1969)

The Milky Way Galaxy

The Sun is a normal G2V stars. (Maybe.)

The Milky Way is a normal (barred) spiral. (Probably).

The Milky Way is a typical result of DM-driven hierarchical structure formation (?).

Belokurov et al. (2006)

Some milestones on the way

Halo stars (chemically: Chamberlain \mathcal{E}

The Thick disk (photometrically:
Gilmore \mathcal{E} Reid 1983)

Lessons learnt?

The Solar neighboorhood (chemically: Edvardsson et al. 1993)

The Thick disk (chemically: Fuhrmann
1998; Bensby et al.)
Definition of the Bulge population dozens of stars
(Rich, McWilliam, Fulbright; Ryde; Bensby)

Inner/outer halo (SDSS-SEGUE: Carollo
et al. (2007), but see Schönrich et al. 2011)

Discoveries often local/ with poor statistics, but a clear tendency towards a more statistically sound global view of Galactic populations.

Is there a Thick disk?

gaia

A unique population in terms of its chemistry, dynamics and age!

THE MILKY WAY HAS NO DISTINCT THICK DISK

Jo Bovy ${ }^{1,4}$, Hans-Walter Rix ${ }^{2}$, and David W. Hogg ${ }^{2,3}$
${ }^{1}$ Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA; bovy@ ias.edu
${ }^{2}$ Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
${ }^{3}$ Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003, USA Received 2011 December 6; accepted 2012 March 30; published 2012 May 15

Doing chemo-dynamics with Gaia
 \section*{gaia}

High Precision Parallax Collecting Satellite

(1989-1993)

Where are the 100s of building blocks predicted by DM-driven structure formation in Λ CDM cosmology?

A prerequisite

Are dynamical/chemical properties of stars conserved?

Yes (or the most part).

Dynamics: interactions with specific structures (e.g. the bar) can lead to changes in the orbits.

Chemistry: Giant stars dregde up processed material from the interior; stars can receive matter from a companion; atomic diffusion can change the surface composition.

Gaia in a nutsheil. (2013-20.18) astrometry for 1 billion stars $\sigma=22 \mu \mathrm{as} . @ V=15$
photometry for 10^{9} stars $(V<20)$ radial velocities for 10^{8} stars.
stellar parameters for 10^{7} stars.

$\pi, \alpha, \delta, \mu_{\alpha}, \mu_{\delta}, v_{\mathrm{rad}}, T_{\mathrm{eff}}, \mathrm{A}_{V}, \log g,[\mathrm{M} / \mathrm{H}],[\alpha / \mathrm{Fe}]$

Moleta

Stellar Physics \& Galactic evolution

temperature

metallicity

How does it work?

$$
\begin{aligned}
& \qquad \begin{aligned}
\pi[\mathrm{arcsec}] & =1 / \mathrm{d}[\mathrm{pc}] \\
(1 \mathrm{pc} & =3.26 \mathrm{ly})
\end{aligned} \\
& \text { Parallax of nearest star: } \quad \begin{aligned}
\pi & =0.7687 \mathrm{arcsec} \\
& =768700 \mu \mathrm{as}
\end{aligned}
\end{aligned}
$$

Parallax of Galactic centre: $\pi=118 \mu \mathrm{as}$

Parallax of nearest satellite (LMC): $\pi=20 \mu$ as

Gaia best accuracy: $\sim 10 \mu$ as
("resolving a coin on the Moon")

Earth's motion around Sun

μ as astrometry from space

Same principle as HIPPARCOS (1989-1993), but two orders-of-magnitude more precise.

Two telescopes with LOSs separated by a 106.5° basic angle.

Observe the whole sky by having the satellite's spin axis precess around the Sun.

The ideal place for this: L2 outside of Earth's
orbit, 1.5 million km away. Lissajous orbit around L2 avoiding Earth great circles eclipses during 6 years.
Transfer to L2: 4 month (eclipse-free)

Gaia's telescopes

gaia

Gaia's focal plane

gaia

BP/RP (330-1050 nm)

80 pixels in two arms (blue and red) with dispersions between $50 \AA$ and $300 \AA$.
Red \&
photo
dete
de

RVS (847-874 nm)

$R=11500$ down to $11^{\text {th }}$ magnitude, 5500 below.

Typically 80 observations over 5 years (binarity, variability!).

Photometer prisms

RVS grating and afocal field corrector

M4/M'4 beam combiner

M5 \& M6 fold mirrors

Gaia's CCDs

gaia

What Gaia will not provide

(Radial velocities below $V \approx 15$

* Chemical abundances below $V \approx 14$
$*$ Good $\mathrm{T}_{\text {eff }} / A_{V}$ decoupling

Brown et al. (2005)

Astrophysical parameter degeneracies

gaia

Known science highlights

gaia

Stellar populations, moving groups, the bar, DM, \ldots

500000 quasars (RF!)

PPN γ and β

Expect the unexpected!

Knowledge beyond astrometry

Need to collect complementary information only photometry/spectroscopy can provide to

- reach the desired astrometric accuracy,
- complete the 6D phase-space information with $v_{\text {rad }}$,
- reach Gaia's Galactic-evolution science goals.
E.g., the identification of Galactic building blocks in the outer halo cannot be achieved on kinematics alone (Brown et al. 2005).

Ground-based follow-up

The Gaia-ESO Survey (2011-2016)

300 nights at the Very Large Telescope to obtain observations of 10^{5} stars of all mature Galactic populations in-situ.
value of observing time: $30 \mathrm{M} €$

The Gaia-ESO survey: Galactic Astrophysics via VISTA Imaging, Gaia Astrometry, and Eso SpectrOscopy
PI: Gerry Gilmore ${ }^{1}$
Steering Group: James Binney ${ }^{2}$, Piercarlo Bonifacio ${ }^{7}$, Annette Ferguson ${ }^{3}$, Sofia Feltzing ${ }^{19}$, Eva Grebel ${ }^{12}$, Amina Helmi ${ }^{13}$, Geraint Lewis ${ }^{23}$, Alejandra Recio-Blanco ${ }^{4}$, Hans-Walter Rix ${ }^{10}$, Matthias Steinmetz ${ }^{11}$, Nic Walton ${ }^{56}$
CoI: C. Allende Prieto ${ }^{16}$, T. Antoja ${ }^{13}$, J. Alves ${ }^{42}$, F. Arenou ${ }^{7}$, M. Asplund ${ }^{37}$, C. Babusiaux ${ }^{7}$ C. Bailer-Jones ${ }^{10}$, B. Barbuy ${ }^{39}$, M. Bellazzini ${ }^{15}$, V. Belokurov ${ }^{1}$, T. Bensby ${ }^{19}$, O. Bienayme ${ }^{8}$, J. Bland-Hawthorn ${ }^{23}$, A. Brown ${ }^{14}$, J. Caballero ${ }^{31}$, E. Caffau ${ }^{7,12}$, F. Calura ${ }^{55}$, L. Casagrande ${ }^{37}$, N. Christlieb ${ }^{12}$, C. Chiappini ${ }^{11}$, M. Colless ${ }^{24}$, M. Correnti ${ }^{15}$, M.Cropper ${ }^{5}$, J. Drew ${ }^{6}$, S. Van Eck ${ }^{48}$, B. Edvardsson ${ }^{20}$, N.W. Evans ${ }^{1}$, K. Eriksson ${ }^{20}$, B. Famaey ${ }^{8}$, M. Fellhauer ${ }^{21}$, I. Ferreras ${ }^{5}$, F. Figueras (\& Spanish Gaia network) ${ }^{17}$, G. Fiorentino ${ }^{13}$, C. Flynn ${ }^{23}$, P. Francois ${ }^{7}$, K. Freeman ${ }^{25}$, B. Gaensicke ${ }^{47}$, F. Garzòn ${ }^{16}$, S. Geier ${ }^{52}$, D. Geisler ${ }^{21}$, B. Gibson ${ }^{55}$, J. Gonzalez Hernandez 16, A. Gomboc ${ }^{27}$, A. Gomez ${ }^{7}$, M. Groenewegen ${ }^{34}$, F. Grundah1 ${ }^{49}$, B. Gustafsson ${ }^{20}$, P.Hadrava ${ }^{54}$, D. Hadzidimitriou ${ }^{29}$, N. Hambly ${ }^{3}$, P. Hammersley ${ }^{33}$, M. Haywood ${ }^{7}$, U. Heber ${ }^{52}$, G. Hensler ${ }^{42}$, V. Hill ${ }^{4}$, S. Hodgkin ${ }^{1}$, R. Ibata ${ }^{8}$, M. Irwin ${ }^{1}$, R. deJong ${ }^{11}$, P. Jonker ${ }^{50,51}$, A. Jorissen 48, D. Katz ${ }^{7}$, D. Kawata ${ }^{5}$, S. Keller ${ }^{25}$, R. Klement ${ }^{10}$, A. Koch ${ }^{53}$, M. Kontizas ${ }^{29}$, S. Koposov 1, A. Korn ${ }^{20}$, P. Koubsky ${ }^{54}$, R. Lallement ${ }^{32}$, P deLaverny ${ }^{4}$, B. Lemasle ${ }^{13}$, K. Lind ${ }^{37}$, P. Lucas ${ }^{6}$, H. Ludwig ${ }^{12}$, T. Lueftinger ${ }^{42}$, J-B. Marquette ${ }^{35}$, G. Matijevic ${ }^{27}$, R. McMahon ${ }^{1}$, I. Minchev ${ }^{11}$, D. Minniti ${ }^{36}$, L. Monaco ${ }^{21}$, D. Montes ${ }^{18}$, M.J. Monteiro ${ }^{46}$, N. Mowlavi ${ }^{41}$, A Mucciarelli ${ }^{45}$, U. Munari ${ }^{30}$, R. Napiwotzki ${ }^{6}$, G. Nelemans ${ }^{51}$, J. Palous ${ }^{54}$, E. Pancino ${ }^{15}$, J. Penarrubia ${ }^{1,39}$, G. Piotto ${ }^{30}$, H. Posbic ${ }^{7}$, A. Quirrenbach ${ }^{12}$, C. Reyle ${ }^{9}$, N. Robichon ${ }^{7}$, A. Robin ${ }^{9}$, F. Royer ${ }^{7}$, G. Ruchti ${ }^{37}$, A. Ruzicka ${ }^{54}$, S. Ryan ${ }^{6}$, N. Ryde ${ }^{19}$, N. Santos ${ }^{46}$, L.M. Sarro Baro ${ }^{44}$, L. Sbordone ${ }^{33,37}$, R. Schönrich ${ }^{37}$, G. Seabroke ${ }^{5}$, S. Sharma ${ }^{23}$, G. De Silva ${ }^{24}$, M. Smith 1,43, C. Soubiran ${ }^{9}$, S. Sousa ${ }^{46}$, E. Tolstoy ${ }^{13}$, C. Turon (\& French Gaia network) ${ }^{7}$, M. Walker 1,38, K. Venn ${ }^{26}$, R. Wyse ${ }^{28}$, M. Zoccali ${ }^{36}$, D. Zucker ${ }^{22}$, T. Zwitter ${ }^{27}$
${ }^{1}$ IoA Cambridge, UK; ${ }^{2}$ Theoretical Physics, Oxford, UK; ${ }^{3}$ Edinburgh, UK; ${ }^{4}$ OCA Nice, France; ${ }^{5}$ MSSL, UCL, UK; ${ }^{6}$ U Herts, UK; ${ }^{7}$ Obs Paris, France; ${ }^{8}$ Obs Strasbourg, France; ${ }^{9}$ Obs Besancon, France; ${ }^{10}$ MPIA, IIP Potsdam, Germany; ${ }^{12}$ ZAH Univ. Heidelberg Germany; ${ }^{13}$ Kapteyn Inst. den, NI; ${ }^{15}$ INAF Bologna, Italy; ${ }^{16}$ IAC, Canary Islands, Spain; ${ }^{17}$ Univ Barcelona, ${ }^{\text {ain; }}{ }^{23}$ Lund Univ, Sweden; ${ }^{23}$ Ppsala Univ, Sweden; ${ }^{24}$ AAO, Australia: ${ }^{25}$ ANU, Australia; ${ }^{26}$ Univ Vis bliana, Slovenia: ${ }^{28}$ Johns Hopkins Univ, USA. ${ }^{29}$ Univ Athens, Greece: ${ }^{30}$ INAF e As, e Astrobiologia, Madrid, Spain; LA LATM ${ }^{36}$ MPA Garching Germany; ${ }^{38}$ CfA, USA; Univ Sao Paolo, Brazil; ${ }^{41}$ Obs de Geneve, Switzerland; ${ }^{42}$ IoA Univ Vienna, Ausina; ${ }^{44}$ UNED, Madrid, Spain; ${ }^{45}$ Univ Bologna, Italy; ${ }^{46}$ CAUP Porto, Portugal; B, Brussels, Belgium; ${ }^{49}$ Univ Aarhus, Denmark; ${ }^{50}$ SRON, N1; ${ }^{51}$ Univ. Nijmegen, gen-Nuernberg, Germany; ${ }^{53}$ Univ Leicester, UK; ${ }^{54}$ Ast Inst Acad Sci, Prague, cs, Preston, UK; ${ }^{56}$ GREAT Chair, ESA Gaia GST.

Gaia, Gaia-ESO and...

gaia

Complement dynamics with chemistry!

5000 thin- and thick-disk stars
at high spectral resolution

Homogeneous re-analȳses of the ESO archive

100000 stars of all populations at medium spectral resolution

Major upcoming/future efforts include APOGEE, HERMES and 4MOST.

Gaia and Gaia research...

gaia

... a Galactic revolution in the making!

