Surveying the Galaxy

ESA's upcoming Gaia mission

Andreas Korn

IFA, Uppsala University andreas.korn@physics.uu.se

Predicting the future...

gaia

Outline of this talk

Where we stand with the Galaxy

* Where we stand with Gaia

***** Challenges

Scientific impact

The Milky Way Galaxy

The Sun is a normal G2V stars.

gaia

Maybe, but it is unusually massive (most stars are M dwarfs) and it departs systematically from field solar twins in its chemical composition (but cf. Önehag *et al.* (2011) for a solar twin in the open cluster M 67).

The Milky Way Galaxy

The Sun is a normal G2V stars. (Maybe.)

gaia

The Milky Way is a normal (barred) spiral.

Probably, but its primary satellites are unusually luminous and star-forming: the Magellanic Clouds (cf. Holmberg 1969)

The Milky Way Galaxy

The Sun is a normal G2V stars. (Maybe.)

gaia

The Milky Way is a normal (barred) spiral. (*Probably*).

The Milky Way is a typical result of DM-driven hierarchical structure formation (?).

Belokurov et al. (2006)

Some milestones on the way

Halo stars (chemically: Char Aller 1951)	mberlain & 2 local stars	
The Thick disk (photometr Gilmore & Reid 1983)	rically: 12500 stars	Lessons le
The Solar neighboorho (chemically: Edvardsson et a	od al. 1993) 189 stars	Discoveries of with poor
The Thick disk (chemically 1998; Bensby <i>et al.</i>)	y: Fuhrmann 0+ stars, now 10	but a clear towards a
Definition of the Bulge population	zens of stars	sound glo Galactic p
(Rich, McWilliam, Fulbright Bensby)	; Ryde; 1000s of stars	S
Inner/outer halo (SDSS-S et al. (2007), but see Schönn	EGUE: Carollo rich et al. 2011)	

gaia

earnt?

often local/ statistics, r tendency more statistically bal view of opulations.

Is there a Thick disk?

A unique population in terms of its chemistry, dynamics and age!

THE ASTROPHYSICAL JOURNAL, 751:131 (6pp), 2012 June 1 © 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

gaia

doi:10.1088/0004-637X/751/2/131

THE MILKY WAY HAS NO DISTINCT THICK DISK

JO BOVY^{1,4}, HANS-WALTER RIX², AND DAVID W. HOGG^{2,3} ¹ Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA; bovy@ias.edu ² Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany ³ Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003, USA *Received 2011 December 6; accepted 2012 March 30; published 2012 May 15*

Doing chemo-dynamics with Gaia

High Precision Parallax Collecting Satellite

(1989-1993)

Where are the 100s of building blocks predicted by DM-driven structure formation in Λ CDM cosmology?

A prerequisite

Are dynamical/chemical properties of stars conserved?

Yes (or the most part).

gaia

Dynamics: interactions with specific structures (e.g. the bar) can lead to changes in the orbits.

Chemistry: Giant stars dregde up processed material from the interior; stars can receive matter from a companion; atomic diffusion can change the surface composition. Gaia in a nutshell (2013 – 2018) astrometry for 1 billion stars $\sigma = 22 \mu as @ V=15$

photometry for 10^9 stars (V < 20) radial velocities for 10^8 stars stellar parameters for 10^7 stars

π, α, δ, μ_{α} , μ_{δ} , v_{rad} , T_{eff} , A_V , log g, [M/H], [α/Fe]

Stellar Physics & Galactic evolution

temperature metallicity reddening luminosity

Moletai

 M_V d [kpc]

 K0 IV
 +3.2
 2

 K0 III
 +1.2
 6

 K0 II
 -2.0
 25

gaia

How does it work?

$$\pi$$
[arcsec] = 1/d[pc]
(1 pc = 3.26 ly)

Parallax of nearest star: $\pi = 0.7687$ arcsec = 768700 µas

Parallax of Galactic centre: $\pi = 118 \ \mu as$

Parallax of nearest satellite (LMC): $\pi = 20 \ \mu as$

Gaia best accuracy: ~10 µas ("resolving a coin on the Moon")

Gaia's telescopes

Gaia's focal plane

gaia

Gaia's CCDs

What Gaia will not provide

- ***** Radial velocities below $V \approx 15$
- ★ Chemical abundances below $V \approx 14$
- **K** Good T_{eff} / A_V decoupling

gaia

Astrophysical parameter degeneracies

Known science highlights

Expect the unexpected!

gaia

Need to collect **complementary information** only photometry/spectroscopy can provide to

- reach the desired astrometric accuracy,
- complete the 6D phase-space information with v_{rad} ,
- reach Gaia's Galactic-evolution science goals.
 E.g., the identification of Galactic building blocks in the outer halo cannot be achieved on kinematics alone (Brown *et al.* 2005).

Ground-based follow-up

The Gaia-ESO Survey (2011-2016)

gaia

300 nights at the Very Large Telescope to obtain observations of 10⁵ stars of all mature Galactic populations in-situ.

value of observing time: 30 M€

The Gaia-ESO survey: Galactic Astrophysics via VISTA Imaging, Gaia Astrometry, and Eso SpectrOscopy

PI: Gerry Gilmore¹

Steering Group: James Binney², Piercarlo Bonifacio⁷, Annette Ferguson³, Sofia Feltzing¹⁹, Eva Grebel¹², Amina Helmi¹³, Geraint Lewis²³, Alejandra Recio-Blanco⁴, Hans-Walter Rix¹⁰, Matthias Steinmetz¹¹, Nic Walton⁵⁶

Col: C. Allende Prieto¹⁶, T. Antoja¹³, J. Alves⁴², F. Arenou⁷, M. Asplund³⁷, C. Babusiaux⁷, C. Bailer-Jones¹⁰, B. Barbuy³⁸, M. Bellazini¹⁵, V. Belokurov¹, T. Bensby¹⁹, O. Bienayme⁸,
 J. Bland-Hawthorn²³, A. Brown¹⁴, J. Caballero⁵¹, E. Caffau^{7,12}, F. Calura⁵⁵, L. Casagrande³⁷,
 N. Christlieb¹², C. Chiappini¹¹, M. Colless²⁴, M. Correnti¹⁵, M.Cropper⁵, J. Drew⁶, S. Van Eck⁴⁸, B. Edvardsson²⁰, N.W. Evans¹, K. Eriksson²⁰, B. Famaey⁸, M. Fellhauer²¹, I. Ferreras⁵, F. Figueras (& Spanish Gaia network)¹⁷, G. Fiorentino¹³, C. Flynn²³, P. Francois⁷, K. Freeman²⁵, B. Gaensicke⁴⁷, F. Garzòn¹⁶, S. Geier⁵², D. Geisler²¹, B. Gibson⁵⁵, J. Gonzalez Hernandez¹⁶, A. Gomboc²⁷, A. Gomez⁷, M. Groenewegen³⁴, F. Grundahl⁴⁹, B. Gustafsson²⁰ P.Hadrava⁵⁴, D. Hadzidimitriou²⁹, N. Hambly³, P. Hammersley³³, M. Haywood⁷, U. Heber⁵², G. Hensler⁴², V. Hill⁴, S. Hodgkin¹, R. Ibata⁸, M. Irwin¹, R. deJong¹¹, P. Jonker^{50,51}, A. Jorissen⁴⁸, D. Katz⁷, D. Kawata⁵, S. Keller²⁵, R. Klement¹⁰, A. Koch⁵³, M. Kontizas²⁹, S. Koposov¹, A. Korn²⁰, P. Koubsky⁵⁴, R. Lallement³², P deLaverny⁴, B. Lemasle¹³, K. Lind³⁷, P. Lucas⁶, H. Ludwig¹², T. Lueftinger⁴², J-B. Marquette³⁵, G. Matijevic²⁷, R. McMahon¹, I. Minchev¹¹, D. Minniti³⁶, L. Monaco²¹, D. Montes¹⁸, M.J. Monteiro⁴⁶, N. Mowlavi⁴¹, A. Mucciarelli⁴⁵, U. Munari³⁰, R. Napiwotzki⁶, G. Nelemans⁵¹, J. Palous⁵⁴, E. Pancino¹⁵, J. Penarrubia^{1,39}, G. Piotto³⁰, H. Posbic⁷, A. Quirrenbach¹², C. Reyle⁹, N. Robichon⁷, A. Robin⁹, F. Royer⁷, G. Ruchti³⁷, A. Ruzicka⁵⁴, S. Ryan⁶, N. Ryde¹⁹, N. Santos⁴⁶, L.M. Sarro Baro⁴⁴, L. Sbordone^{33,37}, R. Schönrich³⁷, G. Seabroke⁵, S. Sharma²³, G. De Silva²⁴, M. Smith^{1,43}, C. Soubiran⁹, S. Sousa⁴⁶, E. Tolstoy¹³, C. Turon (& French Gaia network)⁷, M. Walker^{1,38}, K. Venn²⁶, R. Wyse²⁸, M. Zoccali³⁶, D. Zucker²², T. Zwitter²⁷ ¹IoA Cambridge, UK; ²Theoretical Physics, Oxford, UK; ³Edinburgh, UK; ⁴OCA Nice, France; ⁵MSSL,

UCL, UK; ⁶U Herts, UK; ⁷Obs Paris, France; ⁸Obs Strasbourg, France; ⁹ Obs Besancon, France; ¹⁰MPIA,

MP Potsdam, Germany; ¹²ZAH Univ. Heidelberg Germany; ¹³Kapteyn Inst. iden, NI; ¹⁵INAF Bologna, Italy; ¹⁶IAC, Canary Islands, Spain; ¹⁷Univ Barcelona, ain; ¹⁹Lund Univ, Sweden; ²⁰Uppsala Univ, Sweden; ²¹Univ Concepcion, Chile; lia; ²³Univ Sydney, Australia; ²⁴AAO, Australia; ²⁵ANU, Australia; ²⁶Univ Vic-bliana, Slovenia; ²⁶Johns Hopkins Univ, USA; ²⁹Univ Athens, Greece; ³⁰INAF e Astrobiologia, Madrid, Spain; ³²LATMOS/IPSL, Versailles, France; ³³ESO; Paris, France; ³⁶Univ. Catolica, Chile; ³⁷MPA, Garching, Germany; ³⁸CfA, USA; Univ Sao Paolo, Brazil; ⁴¹Obs de Geneve, Switzerland; ⁴²IoA Univ Vienna, Ausina; ⁴⁴UNED, Madrid, Spain; ⁴⁵Univ Bologna, Italy; ⁴⁶CAUP Porto, Portugal; B, Brussels, Belgium; ⁴⁹Univ Aarhus, Denmark; ⁵⁰SRON, Nl; ⁵¹Univ. Nijmegen, gen-Nuernberg, Germany; ⁵³Univ Leicester, UK; ⁵⁴Ast Inst Acad Sci. Prague, cs, Preston, UK; ⁵⁶GREAT Chair, ESA Gaia GST.

Gaia, Gaia-ESO and...

gaia

Major upcoming/future efforts include APOGEE, HERMES and 4MOST.

Gaia and Gaia research...

... a Galactic revolution in the making!