Stellar structure and evolution

Ulrike Heiter

NordForsk

Uppsala University

July 2012, Nordic-Baltic Summer School

Outline

- I. The lives of stars
 Overview of stellar evolution
- 2. Physics of stellar evolution
 Stellar structure equations, time scales
- 3. Evolution of abundances
 - Stellar evolution: dredge-ups
 - Galactic chemical evolution

Selected literature

- Dina Prialnik, An Introduction to the Theory of Stellar Structure and Evolution, 2nd Edition, Cambridge University Press, 2009.
- Maurizio Salaris and Santi Cassisi, Evolution of Stars and Stellar Populations, John Wiley & Sons, 2005.
- B.E.J. Pagel, Nucleosynthesis and Chemical Evolution of Galaxies, 2nd Edition, Cambridge University Press, 2009.

•

The lives of stars

- Low- and intermediate-mass stars
- Massive stars
- Cosmic cycle

based on Iben & Tutukov 1997, Sky & Telescope "Many of the sky's most dramatic showpieces are but chapters in the lives of stars"

Star formation

- Protostar: completely convective gas core within gas-dust envelope
- Accretion and contraction for 10⁵ to 10⁷ years, until equilibrium state reached → main-sequence star
 - Gravity ↔ gas pressure gradient
 - Surface energy lost ↔ nuclear energy generated in core
- Literature on star formation: e.g.
 Science 2002, vol. 295, no. 5552
 McKee & Ostriker 2007, ARA&A 45

Main-sequence phase – core hydrogen burning

- Facts
 - Star formation produces more low-mass stars than massive stars
 - Nuclear reaction rates depend on temperature, temperature determined by mass
 → MS lifetime depends on mass: t_{MS} ∝ M⁻³
- Consequences
 - Only 5 percent of all stars formed up to now have evolved beyond main sequence
 - The most massive stars have been formed and "burnt out" throughout thousands of generations since Big Bang

Post-main sequence evolution for low- and intermediate-mass stars

- Mass between 0.7 and 10 M_{\odot}
- 80 to 90 percent of total lifetime on main sequence
- When hydrogen is used up in core, temperature is too low for helium burning
 - Core contraction
 - Hydrogen-shell burning
 - Envelope expands to more than 100 R_☉
 → red giant

He core

core

Post-main sequence evolution for low- and intermediate-mass stars

- Core temperature rises until helium nuclei begin to fuse into carbon and oxygen nuclei
- Duration of core helium burning phase between 10 and 25 percent of mainsequence lifetime
- When helium is used up in core
 → C-O core with hydrogen- and heliumburning shell
 - → asymptotic giant branch (AGB) star

AGB stars are important for galactic chemical evolution

- About 97% of single stars (M \gtrsim 0.7 $M_{\odot})$ become AGB stars
- Produce half of carbon in universe
- Produce heavy elements by neutron capture
- Form dust grains in their atmospheres
- Strong winds carry processed gas and dust out into interstellar medium
- → provide the necessary conditions for the formation of future, more metal-rich generations of stars

Low- and intermediate-mass stars – white dwarfs

- At the end of the very short AGB phase, envelope matter is transferred into circumstellar space due to wind
- Remnant C-O core contracts to about size of Earth and temperature of 100,000 K
 → white dwarf
- UV and X-ray emission from white dwarf causes ejected gas to shine
 → planetary nebula
- White dwarf gradually cools to ≈4,000 K

Massive stars

- Mass between 10 and 50 M_{\odot}
- Short main-sequence phase
 → red or blue supergiant
 with He core
- He burning \rightarrow C-O core
- Core contraction → carbon burning
 → oxygen-neon core → neon burning
- Several cycles of contraction – heating – ignition
 → red supergiant with iron core

A Red Supergiant's Core

Iron Silicon, Sulfut Garbon, Neon, Sodium Carbon, Oxygen, Neon Helium, Nitrogen Mydrogen, Helium

Diagram not to scale

Massive stars – core collapse

- When mass of iron core > 1.4 M_☉
 → core collapses within fraction of second to size of small city
- Iron nuclei photodisintegrate → He nuclei
 → neutrons → *neutron star*
- Matter above core ejected with high velocities → Type II supernova
 - luminosity comparable to entire galaxy
- Chemical elements produced during explosion are returned to interstellar medium

Animation of supernova explosion dissolving into Chandra First Light Image, Cassiopeia A

http://chandra.harvard.edu/resources/animations/sn_to_casa_sm_web.mov

Galactic supernova remnants

3 рс

Crab, 1000 years ago Credit: FORS Team, 8.2-meter VLT, ESO

30 pc

Vela, 10000 years ago

Cosmic cycle

NGC 3603

HST • WFPC2

PRC99-20 • STScl OPO • June 1, 1999 Wolfgang Brandner (JPL/IPAC), Eva K. Grebel (Univ. Washington), You-Hua Chu (Univ. Illinois, Urbana-Champaign) and NASA

Physics of stellar evolution

- Equations of stellar structure and evolution
- Timescales of stellar evolution
- Evolutionary tracks

Basic assumptions

- Star = radiating body of gas bound by self-gravity
- Radiation originates from internal energy sources
 - Nuclear energy from fusion reactions
 - Gravitational potential energy from contraction
- Star in empty space, not influenced by other stars
 - Average distance between stars much larger than average star diameter
 - Gravity and radiation decrease by factor 10⁻¹⁵ from one star to another
- Ignore deviations from spherical symmetry (e.g. rotation, magnetic field)

Basic assumptions

- Physical properties are uniform over spherical surface of radius *r*
- Local thermodynamic equilibrium (LTE)
 - Average properties of the gas in volume element at r are described by local state variables
 - Temperature T, density ρ , pressure P, internal energy u, energy release rate q, luminosity L, chemical composition
 - Changes of state variables are small over mean free path of particles and over mean free time between collisions between particles, including photons

Basic assumptions

- Initial **chemical composition** homogeneous as in Sun
 - **Number** abundances, from abundance analysis: $[M_i/H] = \log[n(M_i)/n(H)] - \log[n(M_i)_{\odot}/n(H)_{\odot}]$
 - **Mass** fractions: hydrogen \rightarrow X, helium \rightarrow Y, all metals (M) \rightarrow **metallicity** Z, any species $M_i \rightarrow X_i$

[M/H]	\approx [$\mathrm{Fe/H}] \approx \log(Z/Z_{\odot})$
[Fe/H]	Z	$Z_{\odot} \approx 0.014$

[Fe/H]	Z
-1.3	0.0007
-1.0	0.0014
0.0	0.014
+0.4	0.035

Model of a star

• Stellar structure =

State variables as a function of r (distance from center)

Stellar evolution =

Change of structure with t (time)

- Derive **equations for state variables** as functions of *r* and *t* from
 - conservation laws
 - nuclear physics (nuclear reaction rates)
 - description of energy transport (by radiation and convection)
 - atomic physics (opacity)
 - equation of state

Conservation of mass and momentum

- m(r) ... mass contained in sphere with radius r
- dm ... mass of shell between r and r+dr

$$dm = 4\pi r^2 \rho dr$$

- Use *m* as independent variable, because total stellar mass changes less during evolution than stellar radius
- **Conservation of momentum** → equation for **pressure**
- Nuclear reaction rates \rightarrow equations for **mass fractions** of chemical species, X_i

Energy

- Conversation of energy and energy transport
 → equations for luminosity and temperature
- Transport of energy inside stars by
 - I. Conduction (collisions between particles)
 - cores of evolved stars, white dwarfs, neutron stars

2.Convection

- occurs in case of intense nuclear burning or high opacity
- important effects: energy transport and **mixing**

3.Radiation

- diffusion approximation

Radiative transport

• Mean free path of photons:

$$\begin{split} \ell_{\rm ph} &= \frac{1}{\kappa\rho} & \kappa \dots \text{ radiative cross-section per unit mass} \\ \text{(absorption coefficient,$$
opacity $)} \\ \text{typical values: } \kappa = \mathsf{I} \ \mathrm{cm}^2 \, \mathrm{g}^{-\mathsf{I}}, \rho = \mathsf{I} \ \mathrm{g} \ \mathrm{cm}^{-3} \to \ell_{\mathrm{ph}} = \mathsf{I} \ \mathrm{cm} \end{split}$

- Compared to stellar radius, ℓ_{ph} is small → can treat radiative transport as a **diffusion process** = random walk of photons
- How long is the travel time t_{ph} of photons from the interior to the surface of the Sun? Notes: distance travelled ≈ step size times square root of number of steps; detailed calculation in Mitalas & Sills 1992, ApJ 401, 759

Radiative transport

- How long is the travel time t_{ph} of photons from the interior to the surface of the Sun?
- \geq Number of steps after which distance R_{\odot} is reached:

$$\begin{split} N &= \left(\frac{R_{\odot}}{\ell_{\rm ph}}\right)^2 \\ \Rightarrow \textbf{\textit{t}}_{\rm ph} &= \frac{N\ell_{\rm ph}}{c} \approx \frac{(7\cdot10^{10})^2 \,[\rm cgs]}{3\cdot10^{10}\cdot3\cdot10^7} \approx 5000 ~\rm yr \\ \ell_{\rm ph} &= \rm I ~\rm cm \end{split}$$

Mitalas & Sills 1992: $\langle \ell_{ph} \rangle = 0.09 \text{ cm}, t_{ph} = 170000 \text{ yr}$

Opacity from atomic physics

- Absorption coefficient calculated for all possible interactions between particles and photons
- Tabulated for different combinations of T, ρ and X_i
- Or approximated by power law: $\kappa = \kappa_0
 ho^a T^b$
- Most important interactions:
 electron scattering a=0, b=0; free-free absorption a=1, b=-7/2
- Opacity tables
 - OPAL (Rogers and Iglesias), also equation of state tables: http://rdc.llnl.gov/opal.html
 - Opacity Project (International collaboration) http://cdsweb.u-strasbg.fr/topbase/TheOP.html

Equations of stellar structure and evolution

$$\frac{\partial r}{\partial m} = \frac{1}{4\pi r^2 \rho}$$

$$\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4} - \frac{1}{4\pi r^2}\ddot{r}$$

$$\frac{\partial L}{\partial m} = q - \dot{u} - P\left(\frac{1}{\rho}\right)^{\cdot}$$

$$\frac{\partial T}{\partial m} = -\frac{3}{16\sigma} \frac{\kappa}{T^3} \frac{L}{(4\pi r^2)^2}$$

Equation of state

 $\frac{\partial X_i}{\partial t} = f_i(\rho, T, \vec{X})$ Equation of state $\kappa = \kappa_0 \rho^a T^b, q = q_0 \rho^m T^n, P = f(\rho, T, X_i)$

Equations of stellar structure and evolution

- Equations of stellar evolution describe changes for three different properties on different timescales
- Structural changes → **dynamical timescale**

$$t_{\rm dyn} = \frac{R}{\dot{R}} \approx \frac{R}{v_{\rm ff}} = \left(\frac{R^3}{2GM}\right)^{1/2} \approx \left(\frac{1}{G\bar{\rho}}\right)^{1/2}$$

- Sun: $t_{dyn} \approx 15$ minutes, red giants (100R_☉): 2 weeks, white dwarfs ($R_{\odot}/50$): 3 seconds
- t_{dyn} = typical timescale on which star reacts to perturbation of hydrostatic equilibrium

- Change of internal energy $U_{tot} \rightarrow$ **thermal timescale**
 - Virial theorem: $|U_{\rm tot}| = \frac{1}{2}\Omega$

Change in U_{tot} = luminosity

 Ω ... total gravitational potential energy

$$t_{\rm th} = \frac{U_{\rm tot}}{L} \approx \frac{GM^2}{2RL}$$

- **Sun**: $t_{th} \approx 15$ million years
- Much longer than t_{dyn}, but much shorter than stellar lifetime \rightarrow stars mostly in thermal equilibrium
- t_{th} = time a star could maintain constant luminosity by contraction = Kelvin-Helmholtz timescale

- Change in composition and "nuclear potential energy" $E_n \rightarrow$ nuclear timescale
 - E_n given by mass excess of hydrogen per unit mass times hydrogen mass fraction times stellar mass
 - Change in E_n = nuclear luminosity L_{nuc} = L in thermal equ.

$$t_{\rm nuc} \approx \frac{7 {
m MeV}/m_{
m H} X M}{L}$$

- Sun: $t_{nuc} \approx 100$ billion years, much larger than its age
- Stars don't consume all available nuclear energy
- Only fraction of stellar mass changes composition

$$t_{
m dyn} \ll t_{
m th} \ll t_{
m nuc}$$

- → rates of nuclear processes determine stellar evolution
 → can decouple equation for chemical composition from the others
- → I. Solve stellar structure equations for given composition
- 2. Apply time step and determine new composition

Solving for stellar structure

- Four differential equations with boundary conditions at
 - center of star (m = 0): r = 0, L = 0
 - surface of star (m = M): fit interior solution to a stellar atmosphere model
- Three "material functions" (for ρ , κ , q)
- Input parameters:
 mass M, chemical composition X(t), Y(t), Z(t)
- **Output**: r(m), P(m), L(m), T(m), $\rho(m)$, $\kappa(m)$, q(m), for each time t, in particular T_{eff} , L, R, ρ_c , P_c
- Equations are highly non-linear and coupled \rightarrow have to be solved with numerical methods

Examples of stellar evolution models and codes

- Geneva grids of stellar evolution models database of models for masses between 0.8 and 120 solar masses, pre-mainsequence, and from main sequence up to carbon burning http://obswww.unige.ch/Recherche/evol/Geneva-grids-of-stellar-evolution
- Padova database of stellar evolutionary tracks http://stev.oapd.inaf.it/
- Dartmouth Stellar Evolution Web Server Java applet for calculation of models between 0.5 and 5 solar masses, from main sequence to core helium burning http://stellar.dartmouth.edu
- CESAM (Nice)

Code d'Évolution Stellaire Adaptatif et Modulaire http://www-n.oca.eu/cesam/

Summary of Part 2

- Assuming stars to be radiating gas spheres and applying basic physics of gas and radiation leads to differential equations for stellar structure variables.
- Estimation of **characteristic timescales** allows to decouple equations and solve for changes in space and time separately.
- Stellar evolution models predict surface properties of stars of different mass and age, which can be compared to observations.