Gaia in the classroom

Olga Suarez - olga.suarez@oca.eu
Côte d'Azur Observatory (Nice, France)

Summary

« Gaia astronomy in the classroom - why?

* List of proposed activities
* Two detailed examples: parallax and spectroscopy

The Côte d'Azur Observatory

$\star 450$ people working in 4 different sites \star Astronomy, geosciences, physics

SERVATOIRE
A COTE D'AZUR

Gaia in the classroom - motivation

夫 Bring science to society through school students

* Importance of sharing real research with school students
* Use astronomy as an excuse to learn physics and mathematics

Pedagogical contents

« Educational activities for 12-18 year-olds

* Deal with all different scientific aspects tackled by Gaia
* Activities developed initially by the European Space Agency (ESA) and adapted and completed by the Observatoire de la Côte d'Azur
\star Conceived for an international teacher training in 2017, at Nice (France) with the occasion of the Gaia IAU conference.

Subjects

* Parallax:
* concept and application in real life
* heaven in the classroom
* Exoplanets:
* computing distances to known exoplanets using Gaia archive
* understanding transit light curves
* Asteroids - NEA (Near Earth Asteroids), risks, computing trajectories with Stellarium
* Stellar spectroscopy
* Gaia's orbit - Lagrange points

Pedagogical unit contents

^ Teacher sheet
\star Power Point presentation

* Student sheet
* Answer sheet
* Available in : https://www.oca.ev/en/training/gaia-training

Parallax in the classroom

Use parallax in the classroom as if you were in the sky

$$
\begin{aligned}
& \text { © }{ }^{5}
\end{aligned}
$$

Measure the angular distance between the stars

To carry out this activity it is necessary to imagine that background stars are a part of the heavenly vault (curved!!)

In the same way the Earth is mapped with longitude and latitude, we must map the sky: we must measure the angle between every star.

Example of angle (angular distance) between 2 stars

In the classroom the distance between the different background stars will be measured

The measurements will be carried out with the giant protractor.

Example of measurements

$$
\begin{aligned}
& \text { - * } \\
& \text { © }{ }^{\prime} \\
& \text { - © © }
\end{aligned}
$$

Photo 2
Photo 1

esa

The yellow star has moved with respect to the background stars.
Comparing the 2 photos and using the angular position of each star we obtain this:

Photo 1

Estimation of the angular position of the yellow star in photo 1: ~99 ${ }^{\circ}$

Photo 2

Estimation of the angular position of the yellow star in photo $2: \sim 78^{\circ}$

$$
\text { Variation of the angular position of the yellow star }=21^{\circ}
$$

From the parallax definition

In our case:
$\beta=$ measured angle from the photos [21° in the example] $\mathrm{a}=$ distance between the student with the camera and the student in the place of the Sun

If α is very small,

$$
d=\frac{\mathrm{a}}{\alpha}
$$

Activity 6 : Spectrum of light,

 from bulbs to starsStudent sheet

What do you observe?

Do you see a continuous rainbow?

Or lines in different colours?

Activity 2. Characterization of stars: the color of stars

The spectra, as those that you have just observed, can be represented in a plot tracing, for each colour (wavelength) the quantity of light that we receive from this colour (flux).

Spectrum

Plot associated with the spectrum

wavelength (nanometers)
For which wavelengths do we get the maximum flux?
Does it correspond to red or blue colors? \qquad -

GRAPHIQUE DU SPECTRE N ${ }^{\circ} 2$

Flux

wavelength (nanometers)

Nébuleuse d'Orion

For this spectrum, in which wavelength is the maximum emission and what color does it correspond to?

CHEMICAL ELEMENTS	Wavelenghts in nm
H (Hydrogen)	$388,397,410,486,656$
Na (Sodium)	589
Mg (Magnesium)	$309,470,517$
Ca (Calcium)	$422,458,526,616$
Cr (Chronium)	464
Ti (Titane)	466,498
Fe (Fer)	$389,404,426,438,452,459,536$
Mn (Manganese)	402,403
Ni (Nickel)	508,509
$\mathrm{O2}$ (Oxygen in that atmosphere)	686

Conclusion

* Set of educational activities that can be found here:
https://www.oca.eu/en - Training - Gaia
https://www.oca.ev/fr - Formation - Formation enseignants - Gaia for teachers

Thanks for your attention!

Cesa

