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Galactic Archaeology
→ studying the formation and evolution of the Milky Way and it’s local volume

https://en.wikipedia.org/wiki/Milky_Way
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→ Stellar chemistry in essential for Galactic Archaeology
→ Low-mass stars as fossil records of the interstellar medium

T=13.8 Gy
T=300000y

T=0

Li
Be
B

Bovy J. Dynamics and Astrophysics of Galaxies. Princeton, NJ (in preparation)

→ From Big Bang to today 
→ Chemical enrichment of the interstellar medium
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→ Stellar chemistry in essential for Galactic Archaeology
→ The Tinsley-Wallerstein diagram

30 stars from Wallerstein (1962)

Beatrice
Tinsley

George
Wallerstein
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~500000 stars from GALAH (Buder et al. 2021)30 stars from Wallerstein (1962)

→ Stellar chemistry in essential for Galactic Archaeology
→ The Tinsley-Wallerstein diagram

Other types of elements:
→ α-like: Ca, Ma, Ti, Si, O, Ne, S
→ Fe-peak: Z, Cu, Ni, Co, Fe, Mn, Cr, V
→ neutron-capture: Sr, Y, Zr, Ba, La, Ce, Pr, Sm, Eu, Gd, Dy, ...
→ Light: Li, B, Be, C, N
→ Odd-Z: Sc, K, Al, Na
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Koppelmann et al. 2019

→ Stellar chemistry in essential for Galactic Archaeology
→ But stellar kinematics and stellar ages too :)

Haywood et al. 2019
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The need for large spectroscopic surveys

Gaia: Gaia Collaboration, Vallenari et al. 2022
AMBRE/ESO: Guiglion et al. 2016
LAMOST: Zhang et al. 2021
Gaia-ESO: Romano et al. 2021
GALAH: Gao et al. 2020
APOGEE: Abdurro'uf et al. 2022
4MOST: de Jong et al. 2019
WEAVE: Jin et al. 2022
MSE: Bergemann et al. 2019
MOONS: Cirasuolo et al. 2020

LAMOST

105 stars

>5x105 stars

5x105 stars

106 stars

30x106 stars >106 stars

>106 stars

>5x105 stars

>104 stars
>106 stars

>106 stars

>5x106 spec
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What we measure from a star:

→ Atmospheric parameters:
→ Effective temperature Teff

→ Surface gravity log(g)
→ Overall metallicity [M/H]

→Average abundance ratios
→ For instance [α/M] with α goes for α-elements (Mg, Si, Ca, O, Ti, Ne, S)

→ Individual chemical abundances
→ [X/Fe] with X = {Mg, Si, Ti, Ni, Fe, Ba, Eu, ….} 

Many other parameters, such as rotation, activity, mass, age ...
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Buder et al. 2018
GALAH Survey
 10 605 stars

What type of stars are we interested in ?
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How do we measure astrophysical quantities? 

→ Using stellar photometry (magnitudes)

→ See also Casagrande et al. 2021 (+ references there-in)

→ Using stellar evolutionary models + magnitudes + parallaxes (distances)
→ Can measure Teff, log(g), [M/H] 
→ StarHorse code: Queiroz et al (2018, 2020, 2023), Anders et al. (2019, 2022) 

Casagrande et al. 2010
Casagrande et al. 2010
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How do we measure astrophysical quantities? 
→ Using stellar spectra

FeHFe  CaCa Na H O O

λ (Å) https://cesar.esa.int/index.php

Solar spectrum
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How do we form stellar absorption spectra ?

Photosphere

Star

Continuous

Fe

Fe

Fe

Fe

Fe
Fe

Fe
Fe

Fe

Fe
FeFe

FeFe

Fe

Fe
Fe

Fe

Fe

Fe
Fe

Fe

Fe
Fe

Fe Fe
Fe

Fe

Fe

Fe absorption lines

→ More on stellar spectroscopy:
→ D. F. Gray “The Observation and Analysis of Stellar Photospheres ” (2021)
→ R. J. Rutten “Radiative Transfer in Stellar Atmospheres” (2003)
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How do stellar spectra correlate with astrophysical parameters ?
→ Example: effective temperature

Teff (K)

> 20000

[10000-20000]

[7500-1000]

[6000-7500]

[4500-6000]

[3000-4500]

< 3000
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Battistini & Bensby 2016

Challenges to face:
1D vs 3D
LTE vs. NLTE
(Lind et al. 2009, Wang et al. 2021)
Low-res vs. High-res
Blends
Rotation, Turbulence

More details on chemical abundance derivation:
→ Jofré, Heiter, and Soubiran (2019)

How do we measure chemical abundances ?

Model atmosphere

Atomic data

Radiative transfer code

+

Teff
log(g)
[M/H]

+

+

→ One popular method: spectral fitting
To create model spectra, we need:
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The impact of spectral resolution on abundance determination

→ Lower spectral resolution:
→ Less clean spectral features to rely on
→ Less elements to be measured
→ Lower precision
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→ Ispec
     (Blanco-Cuaresma et al. 2014)
      https://www.blancocuaresma.com/s/iSpec

→ Spectroscopy Made Easy (SME)
    (Valenti & Piskunov 1996, Piskunov & Valenti 2017)
     https://www.stsci.edu/~valenti/sme.html

→ MOOG
      (Sneden et al. 2012)
      https://www.as.utexas.edu/~chris/moog.html

A few examples of spectral analysis codes
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Take home messages:

- Chemical abundances and kinematics are essential for Galactic Archaeology 
studies

- The analysis of stellar spectra is the only way to get detailed and precise 
chemical abundances

- Large spectroscopic surveys are required (many stars, many Galactic 
components surveyed, as many elements as possible)

- Standard spectroscopic pipelines are essential algorithms but can be slow (few 
tens of spectra analysed per second)

- Data analysis challenge for on-going and future surveys (>107 stars)
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A fantastic machine for 
Galactic Archaeology:

The ESA Gaia space mission
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Gaia: ESA's billion star surveyor 

https://www.esa.int/Enabling_Support/Operations/Gaia_s_biggest_operation_since_launch

Useful link:
https://www.esa.int/Science_Exploration/Space_Science/Gaia https://www.cosmos.esa.int/web/gaia/instruments

Focal plane

https://www.esa.int/Science_Exploration/Space_Science/Gaia
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Gaia: ESA's billion star surveyor 

Useful link:
https://www.cosmos.esa.int/web/gaia/payload-module

Position & 
Brightness

Low-resolution
Spectra

(Blue & Red)

Intermediate-
resolution

spectra
(abundances :) )
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Gaia: ESA's billion star surveyor 
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Gaia: ESA's billion star surveyor 

→ 2 million stars per hours are measured !!



25

Content of Gaia DR3: tremendous amount of data

Gaia DR3 content:
https://www.cosmos.esa.int/web/gaia/dr3
Gaia DR3 papers:
https://www.cosmos.esa.int/web/gaia/dr3-papers

https://www.cosmos.esa.int/web/gaia/dr3-papers
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Map of stellar magnitudes from Gaia’s Early Data Release 3

https://www.esa.int/Science_Exploration/Space_Science/Gaia

GC

LMC
SMC

→ 1.8 billion stars !
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One major output of Gaia: parallaxes (and distances)

https://www.esa.int/Science_Exploration/Space_Science/Gaia/Parallax

→ distance ≈ 1 / parallax



28

One major output of Gaia: parallaxes (and distances)

GC GC
Sun Sun
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Gaia Rp, Rp spectra
→ 220 millions spectra available
R~30-100 (De Angeli et al. 2022)

Rp

Credit: ESA/Gaia/DPAC- CC BY-SA 3.0 IGO, R. Andrae

Useful link:
https://www.cosmos.esa.int/web/gaia/dr3-what-colour-do-they-have

Bp

https://creativecommons.org/licenses/by-sa/3.0/igo/
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Gaia RVS spectra

ESA/Gaia/DPAC/Observatoire de Paris-Meudon/Olivier Marchal & David Katz

~3000 K ~4700 K

~6000 K ~7300 K

~10000 K ~21000 K

→ 1 million spectra available, R~11500 (Katz et al. 2022)



31

Can we exploit in a homogeneous way 
Gaia spectra (RVS + BP/RP)

magnitudes (G, Bp, Rp)
and parallaxes

for supercharged stellar 
parametrization ?

→ Answer after 3 minutes break
→ Spoiler: yes. Method: modern techniques
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Modern
techniques == Machine

Learning
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The world of machine-learning

Webb & Good 2023

The world of machine-learning

→ In the current talk, I will discuss only on Convolutional Neural-Networks
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Why are we interested in Convolutional Neural Networks ?

- Very versatile

- Allow to combine large datasets of different types

- Adapted for large datasets

- Allows to provide fast parametrization

- Able to learn from the noise in the data
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Basic concepts of Convolutional Neural-Networks (CNN)
→ Practical example: Cat and dog classification

CNN
=

High-dimensional
non-linear function

Data Labels→ 
Data Labels

Cat
Dog
...
Dog
Cat

→ Step 1: build a training sample
→ Step 2: generate a model between data and labels

→ 

→ Step 3: predict the type of animal on a picture

CNN
model→ → Dog

Dog ?
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Basic concepts of Convolutional Neural-Networks (CNN)
→ Practical example: Cat and dog classification

CNN
=

High-dimensional
non-linear function

Data Labels→ 
Data Labels

Cat
Dog
...
Dog
Cat

→ Step 1: build a training sample
→ Step 2: generate a model between data and labels

→ 

→ Step 3: predict the type of animal on a picture

CNN
model→ → Dog

???

Dog ?
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Basic concepts of Convolutional-Neural Networks

n1

n2

...

nn-1

nn

Convolution 
layers

Feature
space

Dense layers
(neurons)

→ Face

→ Some literature:
LeCun et al. 1989
LeCun & Bengio 1995
Ciresan et al. 2011

→ → 

Input:
Dataj

Output:
Labelj
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Basic concepts of Convolutional-Neural Networks

n1

n2

...

nn-1

nn

Convolution 
layers

Feature
space

Dense layers
(neurons)

→ Face

→ Some literature:
LeCun et al. 1989
LeCun & Bengio 1995
Ciresan et al. 2011

→ → 

Input:
Dataj

Output:
Labelj

?
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Basic concepts of Convolutional-Neural Networks

What is  a neuron?
→ Computer representation of human neuron
→ “Perceptron”
→ Linear threshold function
→ First implemented on machine by in 1958 by Frank Rosenblatt 

Weighted 
sum

Activation
function

Σ
Output

x1

x2

xn-1

xn

y

b
Bias

Inputs

Weights

w1

w2

wn-1

wn

https://teksands.ai/blog/evolution-of-design-of-artificial-neuron

→ Training a CNN consists in adjusting the weights and biases of neurons in all layers,
to minimize the loss function (mean squared error between truth and prediction)
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CNNs for stellar spectroscopy

Input:
spectra

Output:
Labels

→ 

→ Step 1: build a training set
(with labels determined from standard spectroscopic methods)

Data = spectra Labels = Teff

→ Example: Measuring temperature of the star              which spectrum is 

5234
4834
2730
7598
…
…
…

→ Step 3: predict temperature of 

Trained
CNN→ 

CNN → 

→ Teff = 5812 K

T = ?

→ Step 2: train a CNN

5234
4834
2730
7598
…
…
…

CNN for stellar spectroscopy:
Bailer-Jones et al. 1997
Leung & Bovy 2019
Fabbro et al. 2018
Zhang et al. 2019
Bialek et al. 2020



41

Our experience with CNNs and Gaia-like spectra

→ 1st application of CNNs combining RAVE spectra,
     Gaia magnitudes, and parallaxes
→ Training set: 4000* with labels from APOGEE DR16 (R~22000)
→ Transfer high-quality labels to low-resolution RAVE spectra (R~7500)

Standard spectroscopy:
Using only spectra
(Steinmetz et al. 2020)

Guiglion et al. 2020

CNN

→ Such particular combination of data allows to break the spectral degeneracies inherent to RAVE spectra
(and likely to be present in Gaia RVS spectra)
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S. Nepal (AIP)

→ CNN learns efficiently from relevant spectral features !!
→ CNN well suited for Li derivation (good insigths for next surveys like 4MOST)

Lithium 
line

Nepal, Guiglion et al. (2023)
https://github.com/SamirNepal/Li_CNN_2022

Chemical evolution of lithium with CNN from stellar spectra
→ Why is lithium important ?

→ Chemical evolution of Li in the Milky Way still unclear (e.g. Guiglion et al. 2019)

→ Training set: 7000 stars with Gaia-ESO spectra, to derive Teff, log(g), [Fe/H], A(Li)
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Are we sure that CNN is not measuring abundance correlations ?

M. Ambrosch

→ We know how to properly use CNNs for abundance measurements

Ambrosch, Guiglion et al. (2023)

→ [Al/Fe] and [Mg/Fe] ratios are anti-correlated in Globular Clusters (e.g. Pancino et al. 2017)
→ Training set: 14637 stars with Gaia-ESO spectra. 

Labels: Teff, log(g), [Fe/H], [Al/Fe], [Mg/Fe]
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Analysis of the 1 million Gaia RVS-spectra with CNNs

Motivations and goals: 
→ Use homogeneously the full Gaia data product
→ Provide more precise and accurate atmospheric parameters and abundances

            than the standard Gaia spectroscopic pipeline (GSP-Spec)
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Analysis of the 1 million Gaia RVS-spectra with CNNs

Motivations and goals: 
→ Use homogeneously the full Gaia data product
→ Provide more precise and accurate atmospheric parameters and abundances

            than the standard Gaia spectroscopic pipeline (GSP-Spec)

→ Set the machine-learning path for Gaia data analysis (DR4 in 2025, DR5 in 2027)
→ Provide robust chemical estimates for low-S/N spectra (300000 spectra with 15<S/N<25 !!!!)

Method: GSP-Spec
Data: spectra with 15<S/N<25
Results from Recio-Blanco et al. 2022
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Analysis of the 1 million Gaia RVS-spectra with CNNs

R~22000

R~11000

Knowledge transfer
from high-quality
high-res APOGEE labels 
to intermediate-res RVS

Guiglion, Nepal et al. 2023

Training sample

→ Labels we aim at deriving: Teff, log(g), [M/H], [α/M], [Fe/H]
→ Building a robust training set
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A hybrid Convolutional Neural-Network for Gaia-RVS analysis

→ CNN combines  Gaia G, Bp, 
Rp magnitudes, Parallaxes, 
RVS spectra, and XP data

→ Labels derived:
 Teff, log(g), [M/H], [α/M], [Fe/H]

→ Prediction time
4 labels in 3300 stars / second

→ Deep ensemble approach 
to derive uncertainties.

Guiglion, Nepal et al. 2023
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Robust estimates of Teff, log(g), [M/H] for 690000 Gaia stars

→ By adding magnitudes, parallaxes and XP data, CNN is able to break spectral 
degeneracies in Gaia RVS spectra.

Guiglion, Nepal et al. 2023
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Robust estimates of Teff, log(g), [M/H] for 690000 Gaia stars

→ By adding magnitudes, parallaxes and XP data, CNN is able to break spectral 
degeneracies in Gaia RVS spectra.
→ CNN results are as good as the training set can be.

Stars outside
training set limits

Guiglion, Nepal et al. 2023
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Are we really breaking the RVS degeneracies by using mag., parallaxes and XP data ?

→ Test: Training CNN only using RVS spectra (no mags, no parallaxes, no XP)
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Are we really breaking the RVS degeneracies by using mag., parallaxes and XP data ?

→ Test: Training CNN only using RVS spectra (no mags, no parallaxes, no XP)

→ Hard for CNN to differentiate between 
cool dwarfs and cool giants (same for 
GSP-Spec)

→ Large uncertainties for >75% of the 
sample

→ Thus, combining spectra, magnitudes, 
parallaxes, and XP data is required for 
precise and accurate parametrization
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How does CNN compare to Gaia GSP-Spec (standard spectroscopy) for halo stars ?

→ CNN provides precise and accurate labels down to [M/H]=-2.4 dex

G
uiglio n, N

e pal et al. 202 3
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CNN uncertainties

→ We provide realistic uncertainties thanks to a deep ensemble approach

Guiglion, Nepal et al. 2023
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How does CNN gravities compare to precise asteroseismic ages ?
→ Asteroseismology relies on stellar oscillations (Chaplin & Miglio 2013)
→ Widely used for validation purposes (eg. in RAVE; Valentini et al. 2017)
→ We use here Zinn et al. (2022) asteroseismic data for validation

Guiglion, Nepal et al. 2023

C
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Chemical cartography of the Milky Way, for Inner to Outer regions with Gaia and CNN

→ We selected giants, to probe large distances, and limit possible systematics → 147416 stars
→ Galactic radius and Height adopted from Nepal et al. In prep. (using StarHorse distances).

Galactic radius R (kpc) Galactic radius R (kpc)
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Outer
disc

Inner
disc
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Chemical cartography of the Milky Way, for Inner to Outer regions with Gaia and CNN

→ We selected giants, to probe large distances, and limit possible systematics → 147416 stars
→ Galactic radius and Height adopted from Nepal et al. In prep. (using StarHorse distances).

Galactic radius R (kpc) Galactic radius R (kpc)
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→ Studying the chemical abundance pattern [α/M] vs. [M/H] as function of R and Z
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Chemical cartography of the Milky Way, for Inner to Outer regions with Gaia and CNN
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Chemical cartography of the Milky Way, for Inner to Outer regions with Gaia and CNN

→ Findings consistent with past studies (Minchev et al. 2015, Anders et al. 2014,
Hayden et al. 2015, Rojas-Arriagada et al. 2019, Queiroz et al. 2020, 2021).
→ Opening a new era of Galactic Archaeology with Gaia-RVS (Nepal et al. in prep a,b)
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Last take home messages:

- Convolutional Neural-Networks (CNN) are well suited for stellar parametrization

- CNN parametrization is mainly reliable within the training sample limits

- Modern techniques are essential for providing training sample labels 

- CNN parametrization is fast and robust (several 103 stars per second)

- The training sample should be built in a pro-active way

- Future spectroscopic surveys will strongly benefit from such algorithms
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An example of future spectroscopic survey: 4MOST
→ Survey description: de Jong et al. 2019
→ Survey strategy: Guiglion et al. 2019
→ MW Halo surveys: Helmi et al. 2019, Christlieb et al. 2019
→ MW Disc and bulge surveys: Chiappini et al. 2019, Bensby et al. 2019
→ Magellanic clouds: Cioni et al. 2019

4MIDABLE-LR ESO proposal 2020

4MIDABLE-LR ESO proposal 2020
4MOST LR survey
>20 million stars

>20 elements to be measured at R=5000

→ CNN is currently one of the tested ML algorithm 
for the 4MOST Galactic pipeline
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