

Unveil the Sagittarius dwarf galaxy with the *Pristine* survey

MW-Gaia WG5 workshop Breaking Barriers: Inspiring the Next Generation

Sara Vitali, Anke Arentsen, Elsa Starkenburg, Paula Jofré & Pristine collaborators 23/05/2022

The Sagittarius dSph

Discovered in 1994 by Ibata et al.

On-going merger with the Milky-Way

Core (~ 26.5 kpc, M~5x10^8 M☉) + M54 + stellar streams

High extinction and contamination from MW stars

Complex star formation history (SFH) -> different stellar populations (SPs)

Dominated by intermediate-age (8-10 Gyr) SP [Fe/H] ~ - 0.5 Presence of old (>10 Gyr) and metal-poor component [Fe/H] < -1.0

Metallicity analysis for tracing back the history of the galaxy https://arxiv. org/abs/2204.12140

Image credit: Amanda Smith

The Pristine survey

Ongoing since 2016 (Starkenburg et al., 2016)

Photometric survey -> CaHK filter
+ broad-band photometry

Discriminatory power over -3.0 < [Fe/H] < -0.5-> uncertainties of only ~ 0.2%

Study the pristine stars in and around the MW

The Pristine Inner Galaxy Survey (PIGS)

Sub-survey -> bulge (A. Arentsen et al., 2021)

Pristine photometry + *Gaia* G, BP and RP bands

Examine the most metal-poor star in the inner galaxy

 $\delta \sim -30^{\circ} \rightarrow$ Sagittarius (Sgr) region

Spectroscopic follow-up: low and medium resolution spectra (FERRE code)

Photometry: PIGS + Gaia G, BP and RP Extinction correction Schlegel map + color-dependent coefficients for Gaia EDR3 filters

Astrometry: *Gaia* EDR3

Spectroscopy: PIGS, APOGEE DR17, a training sample from the *Pristine* halo survey (SEGUE + APOGEE)

Sgr-PIGS sample:

Cross-match of PIGS data with *Gaia* EDR3 (proper motions, parallaxes)

Isolation of Sgr members

Member selection:

Astrometry: parallax & proper motions

Magnitude: G<17.3

Photometry: quality & variability

44785 members

Member selection:

Astrometry: parallax & proper motions

Magnitude: G<17.3

Photometry: quality & variability

44785 members

426 PIGS-spec candidates **568 APOGEE candidates**

Metallicity analysis:

Calibration: Halo training sample -> +Lamost+APOGEE -> 2300 giants with -4.0 < [Fe/H] < +0.5

2nd 3rd order polynomials for BP and RP bins

Problem for cooler stars-> dependence on α abundances

different CaHK scale -> shift along y-axis

metallicity separation

Different metallicity groups 0.5 dex

Uncertainties on CaHK< 0.08

Spatial distributions: Density maps in binned RA and DEC

MCMC: Fitting of the stellar distribution of the different SPs

Models:

MCMC: Fitting of the stellar distribution of the different SPs

$$N_i = A_0 exp(\frac{r_i}{r_e})$$

$$r_i = \frac{1}{1 - e} (x_i \cos \theta - y_i \sin \theta)^2 + (x_i \sin \theta + y_i \cos \theta)^2)$$

Martin et al., 2018

Models:

MCMC: Fitting of the stellar distribution of the different SPs

$$N_i = A_0 exp(\frac{r_i}{r_e})$$

$$r_i = \frac{1}{1 - e} (x_i \cos \theta - y_i \sin \theta)^2 + (x_i \sin \theta + y_i \cos \theta)^2)$$

Martin et al., 2018

-28-

-30 **-**

-34 **-**

-36 -

280

. ∪ □___32 -

Models:

MCMC: Fitting of the stellar distribution of the different SPs

$$N_i = A_0 exp(\frac{r_i}{r_e})$$

$$r_i = \frac{1}{1 - e} (x_i \cos \theta - y_i \sin \theta)^2 + (x_i \sin \theta + y_i \cos \theta)^2)$$

			_28 -	
Metal-poor ($[Fe/H] < -1.3$)				
a ₀ (J2000)	δ_0 (J2000)	A_0	-30 -	
$284.083^{+0.014}_{-0.014}$	$-30.475_{-0.006}^{+0.006}$	$60.375^{+0.250}_{-0.247}$	⊡ ₩ _32 -	
r_e (deg.)	e	θ (deg.)		
$4.085^{+0.022}_{-0.021}$	$0.566^{+0.003}_{-0.003}$	$-103.971^{+0.208}_{-0.206}$	-34 -	
Metal-rich ($[Fe/H] > -1.0$)				
m(12000)	δο (I2000)	An	—36 -	I
283.830+0.004	$-30.493^{+0.002}_{-0.002}$	$126.008^{+0.222}_{-0.225}$		280
r_e (deg.)	e	θ (deg.)		
$2.987^{+0.006}_{-0.006}$	$0.592^{+0.001}_{-0.001}$	$-107.289^{+0.067}_{-0.068}$		
	$Meta$ $\alpha_0(J2000)$ $284.083^{+0.014}_{-0.014}$ $r_e \text{ (deg.)}$ $4.085^{+0.022}_{-0.021}$ Meta $\alpha_0(J2000)$ $283.830^{+0.004}_{-0.004}$ $r_e \text{ (deg.)}$ $2.987^{+0.006}_{-0.006}$	$\begin{array}{c c} \mbox{Metal-poor} ([Fe/H] < \\ \hline \alpha_0 (J2000) & \delta_0 (J2000) \\ 284.083^{+0.014}_{-0.014} & -30.475^{+0.006}_{-0.006} \\ r_e (deg.) & e \\ 4.085^{+0.022}_{-0.021} & 0.566^{+0.003}_{-0.003} \\ \hline \mbox{Metal-rich} ([Fe/H] > \\ \hline \alpha_0 (J2000) & \delta_0 (J2000) \\ 283.830^{+0.004}_{-0.004} & -30.493^{+0.002}_{-0.002} \\ r_e (deg.) & e \\ 2.987^{+0.006}_{-0.006} & 0.592^{+0.001}_{-0.001} \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$-28 - \frac{Metal-poor ([Fe/H] < -1.3)}{\alpha_0(J2000) \delta_0(J2000) A_0} $ $-30 - \frac{30}{284.083^{+0.014}_{-0.014} -30.475^{+0.006}_{-0.006} 60.375^{+0.250}_{-0.247} \\ r_e (deg.) e \theta (deg.) \\ 4.085^{+0.022}_{-0.021} 0.566^{+0.003}_{-0.003} -103.971^{+0.208}_{-0.206} -34 - \frac{34}{283.830^{+0.004}_{-0.004} -30.493^{+0.002}_{-0.002} 126.008^{+0.222}_{-0.225} \\ r_e (deg.) e \theta (deg.) \\ 2.987^{+0.006}_{-0.006} 0.592^{+0.001}_{-0.001} -107.289^{+0.067}_{-0.068} -36 - \frac{34}{283.890^{+0.004}_{-0.006} -30.992^{+0.001}_{-0.001} -30 - \frac{36}{283.890^{+0.004}_{-0.006} -30.992^{+0.001}_{-0.001} -30 - \frac{36}{283.890^{+0.004}_{-0.006} -30.992^{+0.001}_{-0.001} -30 - \frac{36}{283.890^{+0.007}_{-0.006} -30 - \frac{36}{283.890^{+0.007}_{-0.007} -30 - \frac{36}{283.890^{+0.007}_{-0.006} -30 - \frac{36}{283.890^{+0.007}_{-0.007} -30$

-28-30-30-32-34-34-36-36-38

Very metal-poor (VMP) stars

Photometric selection: [Fe/H] <-2.0

1150 candidates

115 stars in common with PIGS

Very metal-poor (VMP) stars

Photometric selection: [Fe/H] <-2.0

1150 candidates

115 stars in common with PIGS

Spatial distribution:

Mixed along the footprint

Left-over of ancient SP (≥10 Gyr)

Very metal-poor (VMP) stars

Photometric selection: [Fe/H] <-2.0

1150 candidates

115 stars in common with PIGS

Spatial distribution:

Mixed along the footprint

Left-over of ancient SP (≥10 Gyr)

Largest VMP Sgr selection!!

Metallicity gradient

Negative gradient Fraction of MP stars is higher at the outskirts

Metallicity gradient

Negative gradient Fraction of MP stars is higher at the outskirts

Magnitud limit (80% of original sample) — cleaner sample

- Magnitud limit (80% of original sample) cleaner sample
- Milky-Way contamination

- Magnitud limit (80% of original sample) cleaner sample
- Milky-Way contamination
- Iso-metallicity lines \longrightarrow degeneracy [Fe/H] vs α abundance

- Magnitud limit (80% of original sample) \longrightarrow cleaner sample
- Milky-Way contamination
- Iso-metallicity lines \longrightarrow degeneracy [Fe/H] vs a abundances
- Definition of MP and MR populations different [Fe/H] thresholds

- Magnitud limit (80% of original sample) \longrightarrow cleaner sample
- Milky-Way contamination \longrightarrow
- Iso-metallicity lines \longrightarrow degeneracy [Fe/H] vs a abundances
- Definition of MP and MR populations different [Fe/H] thresholds
- Model fitting \longrightarrow approximation \longrightarrow parameters/real structure?

Conclusions

- Homogeneous investigation of 100° of Sgr region -> division in different SPs
- **Metallicity gradient** out to 12° along the Sgr core
- MR ([Fe/H] > -1.0) more centrally concentrated. MP ([Fe/H] < -1.3) more diffuse
- **Fitted models** -> different r_{ρ}
- **Outside-in** formation process
- 1150 VMP candidates -> insight on ancient SP

Conclusions

- Homogeneous investigation of 100° of Sgr region -> division in different SPs
- **Metallicity gradient** out to 12° along the Sgr core
- MR ([Fe/H] > -1.0) more centrally concentrated. MP ([Fe/H] < -1.3) more diffuse
- **Fitted models** -> different r_{ρ}
- **Outside-in** formation process
- 1150 VMP candidates -> insight on ancient SP

Sgr is a unique laboratory and example of a dwarf galaxy interacting with the MW Power and efficiency of *Pristine* + *Gaia* for investigate the history of Sgr dSph and

Important for the MW merging history

Conclusions

- Homogeneous investigation of 100° of Sgr region -> division in different SPs
- **Metallicity gradient** out to 12° along the Sgr core
- MR ([Fe/H] > -1.0) more centrally concentrated. MP ([Fe/H] < -1.3) more diffuse
- **Fitted models** -> different r_{ρ}
- **Outside-in** formation process
- 1150 VMP candidates -> insight on ancient SP

Sgr is a unique laboratory and example of a dwarf galaxy interacting with the MW Power and efficiency of *Pristine* + *Gaia* for investigate the history of Sgr dSph and

Important for the MW merging history

High resolution spectroscopy -> elemental abundances Much more with new Gaia release